Monograph on

Endemism in the Highlands and Escarpments of Angola and Namibia

Editors:

John M Mendelsohn Brian J Huntley Pedro Vaz Pinto

Published with support and funding from:

Ongava Research Centre (ORC)
Namibian Chamber of Environment (NCE)
Centro de Investigação em Biodiversidade
e Recursos Genéticos (CIBIO)
B2Gold Namibia
Total Energies

Language editor: Carole Roberts
Design and layout: Alice Jarvis

NE Namibian Journal of Environment

2023: Volume 8 www.nje.org.na

ISSN: 2026-8327 (online)

CONTENTS

Huntley BJ, Mendelsohn JM & Vaz Pinto P Preface to endemism on the highlands and escarpments of Angola and Namibiai-	iii
Huntley BJ, Mendelsohn JM & Vaz Pinto P The biological importance of the highlands of Angola and Namibia: Synopsis and conclusions	iii
Geography of the highlands and escarpments	
Jarvis AM The highlands and escarpments of Angola and Namibia: orientation maps	-6
Mendelsohn JM & Huntley BJ Introducing the highlands and escarpments of Angola and Namibia	22
Miller RM Geology and landscape evolution of the highlands and escarpments of western Angola and Namibia	28
Huntley BJ Biomes and ecoregions of the highlands and escarpments of Angola and Namibia	41
Mendelsohn JM & Gomes AL The human environment in the highlands and escarpments of Angola and Namibia	51
Vaz Pinto P, Russo V & Veríssimo L The highlands in Angolan conservation areas	62
Diversity and endemism	
Craven P & Kolberg H An overview of plant endemism on the highlands of Namibia	76
Goyder DJ, Gomes AL, Gonçalves FMP, Luís JC & Darbyshire I A botanical assessment of Mt Namba, Cuanza-Sul, Angola: an isolated mountain towards the northwestern limits of the Great Escarpment of southern Africa77	92
Meller P, Lages F, Finckh M, Gomes A & Goyder D Diversity and endemism of geoxylic plants on the Angolan Planalto	09
Bruyns PV, Hanáček P & Klak C Diversity and endemism in the species-rich Ceropegieae (Apocynaceae) and <i>Euphorbia</i> in the highlands and escarpments of Angola and Namibia	34
Dexter KG, Swanepoel W, Loiseau O, Darbyshire I, Nanyeni L, Gonçalves FM, Chase F & Manzitto-Tripp EA High endemism of the genus <i>Petalidium</i> (Acanthaceae) in the highlands and escarpments of Angola and Namibia 135–14	47
Weeks A & Swanepoel W Commiphora of the highlands and escarpments of Angola and Namibia	59
Lautenschläger T, Aime MC, Clausnitzer V, Langer L, Meller P, Müller F, Nuss M, Teutloff N & Ernst R Green gem of the Northern Escarpment: biodiversity and endemism of the Serra do Pingano Forest Ecosystem	72
Kipping J, Clausnitzer V & Dijkstra K-DB The highlands and escarpment of Angola as an endemism hotspot for African dragonflies and damselflies (Insecta: Odonata)	86
Gunter F, Jürgens N & Henschel JR Observations on the diversity of termites in Angola and Namibia	92
Mansell MW The Neuroptera of the highlands and escarpments of Angola and Namibia	96
Gomez K, Hawkes PG & Fisher BL Ant endemicity in the highlands and escarpments of Angola and Namibia (Hymenoptera, Formicidae)	03
Gardiner AJ & Williams MC The endemic butterflies of Angola and Namibia and their evolutionary implications 205-23	30
Prendini L & Bird TL Endemism of Arachnida (Amblypygi, Scorpiones and Solifugae) in the highlands and escarpments of Angola and Namibia: current knowledge and future directions	44
Becker FS, Baptista NL, Vaz Pinto P, Ernst R & Conradie W The amphibians of the highlands and escarpments of Angola and Namibia	57
Bauer AM, Ceríaco LMP, Marques MP & Becker FS Highland reptiles of Angola and Namibia	76
Conradie W, Lobón-Rovira J, Becker FS, Schmitz A & Vaz Pinto P Flat gecko (<i>Afroedura</i>) diversity, endemism and speciation in the highlands and escarpments of Angola and Namibia	81
Skelton PH Fishes of the highlands and escarpments of Angola and Namibia	92
Mills MSL & Melo M Birds of the highlands and escarpments of Angola and Namibia: ornithological significance, avifaunal patterns and questions requiring further study	09
Palmeirim AF, Monadjem A, Vaz Pinto P, Taylor P, Svensson MS & Beja P Mammal endemism in the highlands and escarpments of Angola and Namibia	22
De Matos D, Zastrow J, Val A & Mendelsohn JM Caves and their fauna in the highlands and escarpments of Angola and Namibia	30

Birds of the highlands and escarpments of Angola and Namibia: ornithological significance, avifaunal patterns and questions requiring further study

MSL Mills^{1,2}, M Melo^{2,3,4,5}

URL: https://www.nje.org.na/index.php/nje/article/view/volume8-mills Published online: 15th December 2023

- ¹ AP Leventis Ornithological Research Institute, University of Jos, Jos, Nigeria; goawaybirding@gmail.com
- ² DST/NRF Centre of Excellence at the Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town, South Africa
- ³ CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- ⁴ BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- ⁵ Museu de História Natural e da Ciência da Universidade do Porto, Porto, Portugal

ABSTRACT

The highlands and escarpments of Angola and Namibia are recognised as an important region for the evolution and conservation of birds. However, no comprehensive study of the avifauna, and its potential evolutionary origins and links, has been made. As a basis for further study, we compiled a comprehensive list of birds largely confined to the region, together with details of links to nearest relatives, including birds from all relevant levels of the evolutionary process and taxonomic hierarchy (isolated populations to genera). A total of 233 Evolutionarily Significant Units (ESUs) were identified, comprised of four genera, 37 species, 71 subspecies and 121 taxa with isolated populations. The escarpment holds a richer diversity of ESUs than the Afromontane region, although most escarpment ESUs are separated from relatives by a break in the forest zone of about 320 km. Hence few Northern Escarpment ESUs are differentiated even subspecifically (15 of 111; 14%), and most (n = 92; 83%) involve isolated but undifferentiated populations. However, further south along the escarpment distinctiveness increases; 15 of 64 (23%) forest ESUs on the Central Escarpment are differentiated subspecifically. In contrast, the ESUs of the highlands are typically isolated from their nearest vicariants by a much larger gap. Although only 44 ESUs are found here, 26 of them have differentiated to the subspecies level and seven to species level. In the highlands, lower diversity is paired with a greater degree of differentiation, both of which are known to be the result of extreme isolation. Preliminary research has shown that the Angolan Afromontane forests are located in an area of high climatic stability, and that they constitute an important historical link between the montane bird communities of East Africa and the mountains of Cameroon. Our simple analysis reveals some potentially interesting patterns but relies on largely untested assumptions regarding the closest relatives of the region's significant bird taxa (ESUs). More detailed and extensive studies of the origins and relationships of key bird taxa are needed to explore whether counterintuitive patterns exist that are currently being masked.

Keywords: Angola, avifauna, endemism, escarpments, highlands, Namibia

INTRODUCTION

Congruent distribution patterns of restricted-range (< 50,000 km²) terrestrial bird species have been used to identify key regions of bird endemism (Endemic Bird Areas (EBAs)), globally, as priorities for conservation (Stattersfield et al. 1998). Within Angola and Namibia there is one EBA (Western Angola; Figure 1), defined more than 20 years ago based on 14 restricted-range bird species; the updated taxonomy of BirdLife International (HBW & BirdLife International 2022) recognises seven additional relevant species. This EBA corresponds closely to the escarpment and highland zones in Angola, but also includes some areas adjacent to the escarpment along the coastal plain (Dean et al. 2019). There is also one 'Secondary Area' (defined as covering the range of a single restricted-range species), the 'Namibian Escarpment', based on the range of Herero chat Namibornis herero, which covers parts of both southern Angola and northern Namibia.

The EBA approach, however, is of limited use for understanding the evolutionary significance of regions such as the highlands and escarpments of Angola and Namibia (HEAN), as it was devised as a conservation prioritisation exercise, based on species as the only taxonomic entity considered and on the assumption that species with smaller ranges are more likely to be threatened. Although this is generally true, the method applies an arbitrary cutoff for range size that excludes several species which are endemic or near-endemic to the HEAN. The question of identifying evolutionary hotspots - regions where large numbers of distinctive taxa have evolved and are likely to evolve in the future - requires an approach that considers a region within the context of a wider area, links to other areas, evolutionary distinctiveness of taxa, and includes groups from all levels of the evolutionary process and taxonomic hierarchy (from isolated populations to genera, in this case). This was done at the species level for forestdependent birds, globally (Buchanan et al. 2011); in that analysis the forests of western Angola ranked in

the highest category of impact score for their contribution to global forest bird species richness. Previous assessments (Collar & Stuart 1988, Burgess et al. 2004, de Klerk et al. 2004) all recognise the importance of the western Angolan forests to forest birds. Yet the full contribution of the Angolan–Namibian escarpment and highlands to the evolution of the African avifauna has not yet been evaluated based on current taxonomic understanding.

Allopatric speciation is regarded as the major mode of speciation in birds (Price 2008), and typically requires the condition of disjunct patches of similar habitat. Due to their topography, the HEAN have moister and cooler conditions than their lower and more arid surrounds (Fjeldså & Lovett 1997). Most bird taxa which are endemic or near-endemic to the region occur in moister habitats than found in

surrounding areas; namely, forests where there are adjacent woodlands and savannas, and savannas bordered by deserts. A second important factor that may have contributed to the high levels of endemism observed in this area is long-term habitat stability (Vaz da Silva 2015); the escarpment has trapped moisture-laden coastal air against it for millennia, bringing long-term climatic stability to the area (Hall 1960, Mills 2010).

The physical structure of the escarpment varies across its length, from north to south, which impacts habitats and, consequently, birds. Eleven broad landscape units have been defined within the HEAN based on their topographical, geomorphological, ecological and climatic characteristics (Mendelsohn & Huntley 2023); we are using these landscape units in this paper. However, even within the Central

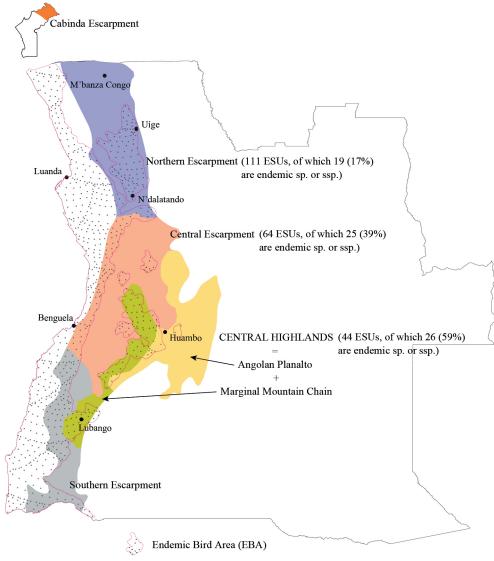


Figure 1: Key avifaunal areas in Angola that fall within the highlands and escarpments of Angola and Namibia that are mentioned in the text. The escarpment, in its broadest sense, is divided into three main zones: Northern (purple), Central (pink) and Southern (grey). Notice the proximity of the escarpment to the Central Highlands along the Central and Southern escarpment. Also notice the decrease in the number of Evolutionarily Significant Units (ESUs) from north to south, along the escarpment, but the concurrent increase, especially in relative terms, in ESUs that are endemic species or subspecies.

Escarpment landscape there are three distinctive forest bird communities linked to different types of forest habitats (Mills 2010).

The significance of the Angolan escarpment for the evolution of birds was studied by Hall (1960), who identified three groups of closely related birds that display different patterns of distribution relative to the escarpment. She identified three biological zones, namely the Escarpment Zone (a wedge of richer habitats on the escarpment), the Acacia Zone (arid savanna, including grasslands and mopane woodlands, along the coastal plain) and the Brachystegia Zone (miombo woodland on the plateau). The groups of birds identified were: (i) birds with a representative form in the Escarpment Zone and in either, or both, of the other zones; (ii) birds with representative forms in the Brachystegia and Acacia zones partly isolated from each other by the Escarpment Zone; and (iii) species endemic or nearly endemic to the Escarpment Zone. These groups demonstrate that the escarpment is both a centre of evolution, with taxa at different stages of evolutionary separation (groups i and iii), and a biological barrier between the more arid habitats of the coast and plateau (group ii). However, Hall (1960) did not address the distinctiveness of the escarpment in the wider context of lowland tropical forests, of which they are an outlier, and how the avifauna of the escarpment relates to that of other similar forests of the Congo Basin. Nor did she look at variation in the avifaunal composition along the escarpment, from north to south.

In this review, we assess the contribution of the HEAN to the evolution of the avifauna of the region.

METHODS

To identify potentially significant components of the avifauna for evolutionary study (here called Evolutionarily Significant Units or ESUs; Moritz 1994), we drew up a comprehensive list of birds confined or largely confined to the HEAN, using a cutoff of two-thirds of the global range or population size overlapping with the study area. This recognises that birds which currently have wider ranges, but whose distributions are centred on the study area, may be useful in understanding the biogeography of the region; they are likely to have evolved here and expanded their ranges more recently. We applied the aforementioned definition generously and without mapping in detail the ranges of the relevant birds (many of which are poorly known for Angola), and we included species which come close to matching the criteria using any dataset. While we recognise that the two-thirds cut-off is arbitrary, we believe that it is the most useful starting point for elucidating the contribution of the region (which also has arbitrarily defined borders) to the evolution of birds, and its

links to other regions. Contra the general definition used in this work, we excluded Cabinda from our assessment of escarpment birds, largely because the forests and birds of Cabinda form a contiguous part of the main block of Congo Basin forests and bird populations. Consequently, there are no endemic taxa or isolated populations of birds known in Cabinda.

Each taxon that met these criteria was considered to be an ESU. For each one, we roughly estimated its degree of confinement to the study area, list whether it is an escarpment and/or montane species, list its closest relative based on best knowledge and give its distance of isolation to its sister taxon. Although the gap between the main Congo Basin forest block (immediately north of the Congo River) and the Northern Escarpment forest is rather small, at about 320 km, it constitutes a significant barrier to forestrestricted species, which tend to be highly sedentary. As such, many Congo Basin forest birds fail to cross it (based on our best knowledge) and, likewise, several Northern Escarpment forest species are not found in the nearby Congo Basin block (e.g., whitecollared oliveback Nesocharis ansorgei and scalybreasted illadopsis Illadopsis albipectus).

From this assessment flows a summary of biogeographic links to other bird communities, and priorities for further study. Although birds are one of the best-known taxonomic groups of Angola, there are still large gaps in knowledge in basics, such as the distribution and status of many species (Dean *et al.* 2019), which could impact the overall assessment.

RESULTS

Overview of avifauna

Among the bird communities of the region, we identified 233 ESUs that are associated with the HEAN (Appendix 1). We defined the escarpment in its broadest sense here, to include moister habitats at the base and top of the escarpment that would not exist without the topography of the escarpment, and similar habitats that extend into the more arid adjacent areas along rivers where the occurrence of bird populations would be unlikely without the influence of the escarpment. We also included moister montane habitats; the isolated Afromontane forests, grasslands and shrublands.

Most significant among these ESUs are four monospecific genera which are endemic to the region, namely *Achaetops* (rockrunner), *Lanioturdus* (white-tailed shrike), *Namibornis* (Herero chat) and *Xenocopsychus* (Angola cave chat) (Appendix 1). These endemic genera are a consequence of divergence events predating the Plio-Pleistocene, the period typically associated with most bird speciation events that have led to much of the current African avifauna (Beresford *et al.* 2005). Interestingly, although Namibia

and southern Angola contribute little to the total number of ESUs of the study region, these four genera are all endemic to the Southern Escarpment. Thus, despite its relative lack of importance in terms of numbers of ESUs, this section of the escarpment contributes significantly to the overall evolutionary distinctiveness of the escarpment region. Additionally, Hartlaub's spurfowl *Pternistis hartlaubi* is basal to all other members of that genus, and Swierstra's francolin *P. swierstrai*, together with the other, extralimital, montane species, is part of an ancient radiation within the genus (Mandiwana-Neudani *et al.* 2019).

Next in significance are 37 taxa regarded as full species, none of which occurs exclusively in Namibia, although nine are found in Namibia and Angola. A few of these species also indicate links to the north (Gabon and Congo), and some species have distributions which extend onto the plateau of Angola, although these are generally confined to the higher-lying areas on its western margin.

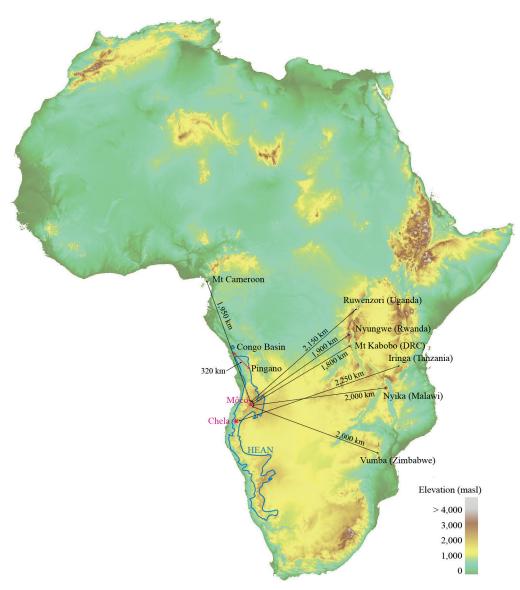
The remainder of the ESUs can be divided into 71 recognised subspecies and 121 taxa with isolated populations which are not regarded as differentiated subspecifically. Together, these two groups are the most informative for understanding links to other regions, not only because of their larger sample size but also because close relatives can generally be assumed as the geographically nearest vicariant.

Of the subspecies, several have parapatric sister taxa whose differences are questionable and may, on reassessment, be found not to constitute ESUs. Similarly, other subspecies may be found to meet specific status in future assessments.

Among the ESUs represented by isolated populations, the vast majority are escarpment species with modest gaps in their range to their nearest vicariant; usually c. 320 km between the Northern Escarpment and the main Congo Basin. Given the small gaps in distribution, some gene flow is likely to persist between these populations and their vicariants, reducing the probability of them evolving along their own evolutionary trajectories. A few ESUs, however, mostly montane taxa, are isolated from closest relatives by more than 1,000 km. One can reasonably assume that gene flow is likely to be inversely proportional to gap size and so a significant proportion of these highly isolated populations may be reassessed to be independent subspecies or species in future or will evolve along independent trajectories and become genetically and phenotypically more isolated from their vicariants with time (Fjeldså & Bowie 2008).

Links to other avifaunas

First, when considering the escarpment and highlands as separate entities, it is apparent that the two areas have independent bird faunas with independent origins, although there are complicating factors. Foremost of these is the proximity between montane habitats and the escarpment in certain parts of Angola, especially within the Marginal Mountain Chain at Lubango and the Central Escarpment at Cumbira. This meeting of the two ecoregions at the top of the escarpment blurs their separation. Significantly, at Cumbira, typical lowland forest birds with links to the Congo Basin, such as buffthroated apalis Apalis rufogularis, and montane specialists, such as grey apalis A. cinerea, with links to distant montane areas, live within earshot of one another. Just above the treeline, at the same site, one also finds arid zone escarpment representatives with links to the south, such as rockrunner Achaetops pycnopygius and mountain wheatear Myrmecocichla monticola. The Central Escarpment is a particularly heterogenous area where montane habitats, lowland forest, arid escarpment and plateau miombo woodlands come together in a small area to form a region of great biological complexity.


To clarify the distinction between escarpment and highlands from an ornithological perspective, we defined any species which is absent from the main highlands (Serra do Môco and Serra da Namba region) as being an escarpment species, and any species that occurs in the main highlands but is absent from the main escarpment (generally around 700 masl) as a highland species. Only 13 of the ESUs occur in both the escarpment and highlands zones, including Angola cave chat Xenocopsychus ansorgei (Mount Soque and on isolated hills away from the escarpment such as around Serra da Neve), red-faced crimsonwing Cryptospiza reichenovii and Angola naked-faced barbet Gymnobucco vernayi (Serra da Namba and Cumbira). The remaining 220 taxa can be attributed to either the escarpment (n = 170) or highlands (n = 50).

The escarpment, as a whole, holds a much richer diversity of ESUs than the Afromontane region (see also Mills 2010, Mills et al. 2011, 2013). The vast majority of escarpment ESUs are separated from relatives by a break in the forest zone of about 320 km, between the northern tip of Pingano (the northernmost ridge of the Northern Escarpment) and the main Congo Basin forest block just north of the Congo River mouth (Figure 2). However, within this gap there are several patches of forest along rivers and in small pockets that almost certainly facilitate the movement of individuals between the two areas, and thus enhance gene flow. As a consequence, there are very few Northern Escarpment ESUs that are differentiated specifically or subspecifically from their nearest vicariants in the Congo Basin. Of a total of 111 ESUs, just 15 are endemic subspecies (14%), of which only one is confined to the Northern Escarpment, and four are endemic species (4%), of which only one is confined to the Northern Escarpment (Braun's bushshrike *Laniarius brauni*). By contrast, the majority of ESUs (n = 92; 83%) involve isolated populations along the northern scarp. The proportion of the ESUs that have differentiated specifically or subspecifically – indicative of an absence or restriction of gene flow – is thus relatively small.

From north to south along the escarpment, however, specific and subspecific distinctiveness increases (Figure 1). Of the 64 forest ESUs that occur on the Central Escarpment (south of the Cuanza River), 15 are differentiated at the subspecies level (23%), including two which are endemic to the Central Escarpment, and 10 at the species level (16%),

including three species endemic to the Central Escarpment. The remaining ESUs (n = 39; 61%) are of taxa with isolated populations. In Angola's Southern Escarpment, forest bird species are largely absent and the avifaunal connection to the Congo Basin is lost almost entirely.

In contrast to the escarpment zone, the ESUs of the Central Highlands (Figure 1, and equivalent to the combined Angolan Planalto and Marginal Mountain Chain of Mendelsohn and Huntley (2023)) are typically isolated from their nearest vicariants by a much larger distributional gap (typically more than 1,500 km). Although only 44 ESUs are found here, 26 (59%) of them have differentiated to the subspecies level and seven to species level. Thus, only a quarter of ESUs in the Central Highlands remain undifferentiated (n = 11; i.e., representing an

Figure 2: Key links of the avifauna of the highlands and escarpments of Angola and Namibia (HEAN) region to other regions within Africa. The highlands (of which Serra do Môco is the highest point) lie at least 1,800 km from other Afromontane centres, whereas the gap between the Northern Escarpment and Congo Basin forests is much smaller.

isolated population). Here the lower diversity is paired with a greater degree of differentiation, both of which are known to be the result of extreme isolation. The Afromontane forests of west-central Angola comprise the most isolated centre of the Afromontane archipelago biome (see White 1978), separated by more than 1,700 km from other similar habitats (Vaz da Silva 2015). Because of the mixed botanical composition of the Afromontane forests of Angola, they were not included in White's (1978) original definition of this phytochorion (or biome) based on plant communities. Nevertheless, their bird communities clearly identify them as belonging to the Afromontane biome (Dowsett 1986, Dowsett-Lemaire & Dowsett 1998). The number of endemics species entirely confined to these forests is small, but many subspecies, and ESUs more generally, are present (Appendix 1; Mills et al. 2011, 2013). Preliminary research - combining molecular data, ecological niche modelling, and the reconstruction of past climates and associated habitats – has shown that the small Angolan Afromontane forests are located in an area which has experienced high climatic stability across several glacial cycles (Vaz da Silva 2015). They also constitute an important historical link between the montane bird communities of East Africa and the mountains of Cameroon. White (1981), using plants as a model and Afromontane isolates as signals of historical connectedness (stepping stones), found evidence for a stronger link between the Ethiopian and Cameroonian highlands via a route south of the Congo Basin, via Angola, (named the Southern Migratory Track) rather than the more direct route that lies north of the Congo Basin. Dowsett-Lemaire and Dowsett (1998) found similar evidence for some birds, including two Angolan species, evergreen forest warbler Bradypterus lopezi and grey apalis Apalis cinerea. For species such as African hill babbler Pseudoalcippe abyssinica and Bocage's akalat Sheppardia bocagei, populations were isolated in the Angola mountains from very early on and are likely to constitute distinct species (Vaz da Silva 2015).

GAPS IN KNOWLEDGE

The simple analysis presented here reveals some potentially interesting patterns but relies on largely untested assumptions regarding the closest relatives of the region's significant bird taxa (ESUs). Even for taxa with published phylogenies, many are based on small sample sizes or incomplete taxon sampling. For example, rockrunner was found to be sister to Cape grassbird *Sphenoeacus afer* in one study (Beresford *et al.* 2005), whereas a second study found Cape grassbird to be sister to African moustached warbler *Melocichla mentalis* (Fregin *et al.* 2012); neither study sampled all three taxa, and so the actual relationships among the three species remains unresolved. More detailed and extensive studies of the origins and relationships of key bird taxa are

needed to explore whether counterintuitive patterns exist that are currently being masked. Of special interest would be seemingly similar taxa that are assumed to be, but are not, most closely related to their geographically nearest vicariants (such as is the case with northern fiscal *Lanius humeralis* and southern fiscal *L. collaris*; Fuchs *et al.* 2011), and morphologically well-differentiated taxa that appear unrelated to nearby taxa but which actually share a common ancestor (for example, the montane white-eyes *Zosterops* spp. of East Africa; Cox *et al.* 2014).

Although bird endemism in Angola and Namibia is mostly concentrated in their highlands (escarpment and Afromontane forests), we know very little about the factors that have driven bird speciation here. Molecular data, sampled across most or all ESUs at the population level, should be obtained to elucidate the biogeography of the bird communities associated with this region (Kahindo et al. 2007). This alone would allow a comprehensive understanding of the diversification history of the avifauna of the highlands of Africa, highlight the dynamics of the interactions between different montane regions and between different parts of the Angolan escarpment and the Congo Basin, as well as the role of the cyclical climatic changes associated with the Plio-Pleistocene glaciations of the northern hemisphere (e.g., Voelker et al. 2010).

A preliminary study using five Afromontane forest bird species occurring in Angola has demonstrated the potential of genetic data to shed light on past evolutionary history (Vaz da Silva 2015). For the avifauna of the Angola escarpment, an obvious starting point would be to test the diversification hypotheses clearly put forward by Hall (1960). Ideally, this would be achieved as an 'umbrella project', built up from MSc and PhD projects carried out by Angolan and Namibian students.

REFERENCES

Beresford P, Barker FK, Ryan PG, Crowe TM (2005) African endemics span the tree of songbirds (Passeri): molecular systematics of several evolutionary 'enigmas'. *Proceedings of the Royal Society B: Biological Sciences* 272(1565): 849–858. https://doi.org/10.1098/rspb.2004. 2997.

Bowie RCK, Fjeldså J, Kiure J, Kristensen JB (2016) A new member of the greater double-collared sunbird complex (Passeriformes: Nectariniidae) from the Eastern Arc Mountains of Africa. *Zootaxa* 4175(1): 23. https://doi.org/10.11646/zootaxa.4175.1.3.

Buchanan GM, Donald PF, Butchart SHM (2011) Identifying priority areas for conservation: a global assessment for forest-dependent birds. *PLoS ONE* 6(12): e29080. https://doi.org/10.1371/journal.pone.0029080.

Burgess N, Hales J, Underwood E, Dinerstein E, Olson D, Itoua I, Schipper J, Rickketts T, Newman K (eds) (2004) Terrestrial ecoregions of Africa and Madagascar: A conservation assessment. *World Wildlife Fund (United States)* 23.

- Coetzer WG, Downs CT, Perrin MR, Willows-Munro S (2015) Molecular systematics of the Cape Parrot (*Poicephalus robustus*): implications for taxonomy and conservation. *PLOS ONE* 10(8): e0133376. https://doi.org/10.1371/journal.pone.0133376.
- Collar NJ, Stuart SN (1988) Key forests for threatened birds in Africa. International Council for Bird Preservation, Cambridge, U.K.
- Cooper MI, Cunningham M, Cherry MI (2001) Taxonomic status of the Namibian Violet Woodhoopoe *Phoeniculus damarensis* as determined by mitochondrial DNA. *Ibis* 143(3): 572–579. https://doi.org/10.1111/j.1474-919X. 2001.tb04884.x.
- Cox SC, Prys-Jones RP, Habel JC, Amakobe BA, Day JJ (2014) Niche divergence promotes rapid diversification of East African sky island white-eyes (Aves: Zosteropidae). *Molecular Ecology* 23(16): 4103–4118. https://doi.org/10.1111/mec.12840.
- De Klerk HM, Fjeldså J, Blyth S, Burgess ND (2004) Gaps in the protected area network for threatened Afrotropical birds. *Biological Conservation* 117(5): 529–537. https://doi.org/10.1016/j.biocon.2003.09.006.
- Dean WRJ, Melo M, Mills MSL (2019) The avifauna of Angola: richness, endemism and rarity. In: Huntley BJ, Russo V, Lages F, Ferrand N (eds) *Biodiversity of Angola*. 335–356. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-03083-4 14.
- Dowsett RJ (1986) Origins of the high-altitude avifaunas of tropical Africa. In: Vuilleumier F, Monasterio M (eds) *High altitude tropical biogeography*. Oxford University Press: American Museum of Natural History, New York.
- Dowsett-Lemaire F, Dowsett RJ (1998) Parallels between F. White's phytochoria and avian zoochoria in tropical Africa: an analysis of the forest elements. In: Huxley CR, Lock M, Cutler DF (eds) *Chorology, taxonomy, and ecology of the floras of Africa and Madagascar*. Royal Botanic Gardens, Kew, Richmond, England.
- Fjeldså J, Bowie RCK (2008) New perspectives on the origin and diversification of Africa's forest avifauna. *African Journal of Ecology* 46(3): 235–247. https://doi.org/10.1111/j.1365-2028.2008.00992.x.
- Fjeldså J, Lovett JC (1997) Geographical patterns of old and young species in African forest biota: the significance of specific montane areas as evolutionary centres. *Biodiversity and Conservation* 6(3): 325–346. https://doi.org/10.1023/A:1018356506390.
- Fregin S, Haase M, Olsson U, Alström P (2012) New insights into family relationships within the avian superfamily Sylvioidea (Passeriformes) based on seven molecular markers. *BMC Evolutionary Biology* 12(1): 157. https://doi.org/10.1186/1471-2148-12-157.
- Fuchs J, Crowe TM, Bowie RCK (2011) Phylogeography of the fiscal shrike (*Lanius collaris*): a novel pattern of genetic structure across the arid zones and savannas of Africa. *Journal of Biogeography* 38(11): 2210–2222. https://doi.org/10.1111/j.1365-2699.2011.02545.x.
- Gill F, Donsker D, Rasmussen P (2023) IOC World Bird List 13.1. https://doi.org/10.14344/IOC.ML.13.0.
- Gonzalez J-CT, Sheldon BC, Collar NJ, Tobias JA (2013) A comprehensive molecular phylogeny for the hornbills (Aves: Bucerotidae). *Molecular Phylogenetics and Evolution* 67(2): 468–483. https://doi.org/10.1016/j. ympev.2013.02.012.
- Hall BP (1960) The faunistic importance of the scarp of Angola. *Ibis* 102(3): 420–442. https://doi.org/10.1111/j.1474-919X.1960.tb08418.x.

- HBW and BirdLife International (2022) Handbook of the Birds of the World and BirdLife International digital checklist of the birds of the world. Version 7. http://datazone.birdlife.org/userfiles/file/Species/Taxono my/HBW-BirdLife Checklist v7 Dec22.zip.
- Jønsson KA, Fabre P-H, Kennedy JD, Holt BG, Borregaard MK, Rahbek C, Fjeldså J (2016) A supermatrix phylogeny of corvoid passerine birds (Aves: Corvides). *Molecular Phylogenetics and Evolution* 94: 87–94. https://doi.org/10.1016/j.ympev.2015.08.020.
- Kahindo C, Bowie RCK, Bates JM (2007) The relevance of data on genetic diversity for the conservation of Afromontane regions. *Biological Conservation* 134(2): 262–270. https://doi.org/10.1016/j.biocon.2006.08.019.
- Mandiwana-Neudani TG, Little RM, Crowe TM, Bowie RC (2019) Taxonomy, phylogeny and biogeography of African spurfowls Galliformes, Phasianidae, Phasianinae, Coturnicini: *Pternistis* spp. *Ostrich* 90(2): 145–172. https://doi.org/10.2989/00306525.2019.1584925.
- Martins FC, Cox SC, Irestedt M, Prŷs-Jones RP, Day JJ (2020) A comprehensive molecular phylogeny of Afrotropical white-eyes (Aves: Zosteropidae) highlights prior underestimation of mainland diversity and complex colonisation history. *Molecular Phylogenetics and Evolution* 149: 106843. https://doi.org/10.1016/j.ympev. 2020.106843.
- Mendelsohn JM & Huntley BJ (2023) Introducing the highlands and escarpments of Angola and Namibia. In: Mendelsohn JM, Huntley BJ, Vaz Pinto P (eds) Monograph on endemism in the highlands and escarpments of Angola and Namibia. *Namibian Journal of Environment* 8: 7–22.
- Mills MSL (2010) Angola's central scarp forests: patterns of bird diversity and conservation threats. *Biodiversity and Conservation* 19(7): 1883–1903. https://doi.org/10.1007/s10531-010-9810-4.
- Mills MSL, Melo M, Vaz A (2013) The Namba mountains: new hope for Afromontane forest birds in Angola. *Bird Conservation International* 23(2): 159–167. https://doi.org/10.1017/S095927091200024X.
- Mills MSL, Olmos F, Melo M, Dean WRJ (2011) Mount Moco: its importance to the conservation of Swierstra's francolin *Pternistis swierstrai* and the Afromontane avifauna of Angola. *Bird Conservation International* 21(2): 119–133. https://doi.org/10.1017/S095927091000 0493.
- Moritz C (1994) Defining 'Evolutionarily Significant Units' for conservation. *Trends in Ecology & Evolution* 9(10): 373–375. https://doi.org/10.1016/0169-5347(94) 90057-4.
- Perktaş U, Groth JG, Barrowclough GF (2020) Phylogeography, species limits, phylogeny, and classification of the turacos (Aves: Musophagidae) based on mitochondrial and nuclear DNA sequences. *American Museum Novitates* 2020(3949): 1. https://doi.org/10.1206/3949.1.
- Prager M, Johansson EIA, Andersson S (2008) A molecular phylogeny of the African widowbirds and bishops, *Euplectes* spp. (Aves: Passeridae: Ploceinae). *Molecular Phylogenetics and Evolution* 46(1): 290–302. https://doi.org/10.1016/j.ympev.2007.09.010.
- Price T (2008) Speciation in birds. Roberts and Co, Greenwood Village, Colorado.
- Stattersfield AJ, Crosby MJ, Long AJ, Wege DC, BirdLife International (eds) (1998) *Endemic bird areas of the world: priorities for biodiversity conservation*. BirdLife International, Cambridge.

- Vaz da Silva B (2015) Evolutionary history of the birds of the Angolan highlands the missing piece to understand the biogeography of the Afromontane forests. University of Porto, Porto. https://sigarra.up.pt/fcup/pt/pub_geral.show_file?pi_doc_id=34415.
- Voelker G, Huntley JW, Peñalba JV, Bowie RCK (2016) Resolving taxonomic uncertainty and historical biogeographic patterns in *Muscicapa* flycatchers and their allies. *Molecular Phylogenetics and Evolution* 94: 618–625. https://doi.org/10.1016/j.ympev.2015.09.026.
- Voelker G, Outlaw RK, Bowie RCK (2010) Pliocene forest dynamics as a primary driver of African bird speciation. *Global Ecology and Biogeography* 19(1): 111–121. https://doi.org/10.1111/j.1466-8238.2009.00500.x.
- White F (1978) The Afromontane region. In: Werger MJA (ed) *Biogeography and Ecology of Southern Africa*. 31: 463–513. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-009-9951-0_11.
- White F (1981) The history of the Afromontane archipelago and the scientific need for its conservation. *African Journal of Ecology* 19: 33–54. https://doi.org/10.1111/j.1365-2028.1981.tb00651.x.
- Zhao M, Gordon Burleigh J, Olsson U, Alström P, Kimball RT (2023) A near-complete and time-calibrated phylogeny of the Old World flycatchers, robins and chats (Aves, Muscicapidae). *Molecular Phylogenetics and Evolution* 178: 107646. https://doi.org/10.1016/j.ympev.2022.107646.

Appendix 1: Significant bird taxa (Evolutionarily Significant Units) of the greater escarpment and highlands regions of Angola and Namibia, ranked in order of evolutionary/taxonomic significance. Taxonomy follows the International Ornithological Congress (IOC) World Bird List (Gill et al. 2023) and all species listed by IOC are included. Additional species recognised by Handbook of the Birds of the World (HBW) and BirdLife International (HBW & BirdLife International 2022) are added, plus a few species based on recently published taxonomies that have not yet been assessed by world lists. None of our own taxonomic assessments affect the taxon list, although we do make comments where appropriate. Column heading abbreviations as follows:

Ass = Percentage range association with the escarpment and highlands (67% minimum), M = Montane species, E = Escarpment species and D = Distance (km) to nearest extant relative, followed by the location of the relative (DRC = Democratic Republic of the Congo).

Species	Ass	M	E	Closest relative	D	Location of relative
GENERA						
White-tailed shrike Lanioturdus torquatus	100	-	E	Western black-headed batis Batis erlangeri (Jonsson et al. 2016)	500	N Angola
Rockrunner Achaetops pycnopygius	100	_	E	African moustached warbler Melocichla mentalis (Fregin et al. 2012) or Cape	0 or 1,000	Parapatric/SW South Africa
				grassbird Sphenoeacus afer (Beresford et al. 2005)		
Angola cave chat Xenocopsychus ansorgei	100	M	E	White-throated robin-chat Dessonornis humeralis (Zhao et al. 2023)	1,650	S Botswana
Herero chat Namibornis herero	100	-	E	Clade of fiscal flycatcher Melaenornis silens and silverbird Empidornis	500	NW South Africa
				semipartitus (Zhao et al. 2023)		
SPECIES						
Finsch's francolin Scleroptila finschi	70	M	-	Possibly Whyte's francolin Scleroptila whytei (Mandiwana-Neudani et al. 2019)	500	NW Zambia
Hartlaub's spurfowl Pternistis hartlaubi	90	-	E	Clade of all other Pternistis francolins (Mandiwana-Neudani et al. 2019)	0	Sympatric
Swierstra's francolin Pternistis swierstrai	100	M	_	Clade of most other Pternistes francolins (Mandiwana-Neudani et al. 2019)	0	Sympatric
Grey-striped francolin Pternistis griseostriatus	100	_	E	Scaly francolin P. squamatus (Mandiwana-Neudani et al. 2019)	320	Cabinda
Red-crested turaco Tauraco erythrolophus	100	-	E	White-crested turaco Tauraco leucolophus (Perktas et al. 2020)	2,000	Cameroon
Red-backed mousebird Colius castanotus	100	M	E	Assumed speckled mousebird C. striatus or white-backed mousebird C. colius	0 or 100	Parapatric/far N Namibia
Violet wood hoopoe Phoeniculus damarensis	75	_	E	Green wood hoopoe P. purpureus (Cooper et al. 2001)	0	Sympatric
Monteiro's hornbill Tockus monteiri	75	_	E	Clade of several other Tockus spp. (Gonzalez et al. 2013)	0	Sympatric
Angola naked-faced barbet Gymnobucco vernayi	100	M	E	Assumed naked-faced barbet G. calvus angolensis	100	N Scarp of Angola
White-bellied barbet Lybius leucogaster	100	_	E	Assumed white-headed barbet L. leucocephalus	2,500	C Tanzania
Western black-backed barbet Lybius minor	75	M	E	Assumed eastern black-backed barbet L. macclounii	0	Parapatric
Rüppell's parrot Poicephalus rueppellii	75	_	E	Clade of all other Poicephalus parrots (Coetzer et al. 2015)	0	Sympatric
Angola batis Batis minulla	70	_	E	Assumed other central African forest Batis spp., e.g., West African batis B. occulta	250	C Gabon
White-fronted wattle-eye Platysteira albifrons	100	_	E	Brown-throated wattle-eye P. cyanea (Jonsson et al. 2016)	0	Parapatric
Monteiro's bushshrike Malaconotus monteiri	100	_	E	Assumed grey-headed bushshrike M. blanchotii	0	Parapatric
Braun's bushshrike Laniarius [luehderi] brauni	100	_	E	Assumed Luhder's bushshrike L. luehderi	320	Cabinda
Gabela bushshrike Laniarius [luehderi] amboimensis	100	_	E	Assumed Braun's bushshrike and/or Luehder's bushshrike	100	N Scarp of Angola
Gabela helmetshrike Prionops gabela	100	_	E	Assumed Retz's helmetshrike P. retzii	200	Plateau of Angola

Species	Ass	M	E	Closest relative	D	Location of relative
Carp's tit Melaniparus carpi	75	-	Е	Assumed southern black tit M. niger	0	Parapatric
Pale-olive greenbul Phyllastrephus fulviventris	90	-	E	Assumed other relatives members of Genus Phyllastrephus	0	Sympatric
Angola white-throated greenbul Phyllastrephus	100	_	E	Assumed white-throated greenbul. P. albigularis	320	Congo Basin
[albigularis] viridiceps						
Pulitzer's longbill Macrosphenus pulitzeri	100	-	E	Assumed Kretschmer's longbill M. kretschmeri	2,100	SW Tanzania
Bubbling cisticola Cisticola bulliens	90	-	E	Assumed chattering cisticola C. anonymus, with which most likely conspecific	0	Parapatric
Huambo cisticola Cisticola bailunduensis	100	M	_	Short-winged cisticola C. brachypterus (Mills et al. in prep.)	0	Sympatric
Hartert's camaroptera Camaroptera harterti	100	-	E	Assumed grey-backed camaroptera C. brevicaudata	0	Parapatric
Bare-cheeked babbler Turdoides gymnogenys	100	-	E	Assumed other members of genus Turdoides	0	Sympatric
Angola yellow white-eye Zosterops quanzae	75	M	Е	Clade including southern yellow white-eye <i>Zosterops anderssoni</i> (Martins <i>et al.</i> 2020)	0	Parapatric
Benguela long-tailed starling <i>Lamprotornis</i> benguelensis	100	-	E	Cunene long-tailed starling L . $violacior$ and Meves's long-tailed starling L . $mevesii$	200	SW Plateau of Angola/SE Angola
Cunene long-tailed starling Lamprotornis violacior	100	-	E	Benguela long-tailed starling L . benguelensis and Meves's long-tailed starling L . mevesii	100	Base of S Scarp/SE Angola
Angola slaty flycatcher Melaenornis brunneus	100	M	_	Clade of other slaty flycatchers (Voelker et al. 2016)	2,000	NE Zambia/Albertine Rift
Gabela akalat Sheppardia gabela	100	_	E	Assumed Tanzanian montane Sheppardia	2,500	Probably C Tanzania
Rufous-tailed palm thrush Cichladusa ruficauda	70	_	E	Assumed collared palm thrush C. arquata	1,000	SW Zambia
Bocage's sunbird Nectarinia bocagii	75	M	_	Assumed Tacazze sunbird N. tacazze	2,100	N Tanzania
Ludwig's double-collared sunbird Cinnyris ludovicensis	100	M	_	Clade of other double-collared sunbirds, excluding Whyte's double-collared	0	Sympatric
				sunbird C. whytei (Bowie et al. 2016)		
Golden-backed bishop Euplectes aureus	100	-	E	Yellow-crowned bishop E. afer (Prager et al. 2008)	0	Sympatric
Angola swee waxbill Coccopygia bocagei	100	M	_	Assumed swee waxbill C. melanotis	2,000	NE South Africa
Cinderella waxbill Estrilda thomensis	100	-	E	Assumed grey waxbill E. perreini	200	Parapatric
SUBSPECIES						
Orange River francolin Scleroptila levalliantoides	75	-	Е	Conspecifics (Mandiwana-Neudani et al. 2019)	0	Parapatric
jugularis						
Red-necked spurfowl Pternistis a. afer	100	_	E	Red-necked spurfowl excluding P. a. cranchii (Mandiwana-Neudani et al. 2019)	2,000	E Zimbabwe/E Zambia
Rwenzori nightjar Caprimulgus ruwenzorii koesteri	100	M	_	Conspecifics	2,000	NE Zambia/Albertine Rift
Horus swift Apus horus fuscobrunneus	100	_	E	Conspecifics	300	CW Angola
African green pigeon Treron calvus ansorgei	100	-	E	Conspecifics	0	Parapatric

Species	Ass	M	E	Closest relative	D Location of relative
Southern yellow-billed hornbill Tockus leucomelas	100	_	Е	Conspecifics	0 Parapatric
elegans					
Crowned hombill Lophoceros a. alboterminatus	100	_	E	Conspecifics	0 Parapatric
Olive bee-eater Merops superciliosus alternans	100	_	E	Conspecifics	1,000 SW Zambia
Naked-faced barbet Gymnobucco calvus congicus	75	_	E	Conspecifics	320 Cabinda
Anchieta's barbet Stactolaema anchietae rex	75	M	_	Conspecifics	0 Parapatric
Western green tinkerbird Pogoniulus coryphaea	100	M	_	Conspecifics	1,900 Albertine Rift/Cameroon
angolensis					
Green-backed honeybird Prodotiscus zambesiae	100	M	_	Conspecifics	0 Parapatric
lathburyi					
Elliot's woodpecker Dendropicos elliotii gabela	100	_	E	Conspecifics	320 Congo Basin
Rosy-faced lovebird Agapornis roseicollis catumbella	100	_	E	Conspecifics	0 Parapatric
Margaret's batis Batis m. margaritae	100	M	_	Conspecifics	500 NW Zambia
Eastern yellow-bellied wattle-eye Platysteira a.	100	_	E	Conspecifics	800 S Gabon
ansorgei					
Grey-headed bushshrike Malaconotus blanchoti	100	_	E	Conspecifics	0 Parapatric
citrinipectus					
Pink-footed puffback Dryoscopus a. angolensis	70	_	E	Conspecifics	800 S Gabon
Swamp boubou Laniarius bicolor guttatus	90	_	E	Conspecifics	Plateau of Angola and coast
					Gabon
Dusky tit Melaniparus funereus gabela	100	_	E	Conspecifics	600 S DRC
Sabota lark Calendulauda sabota ansorgei	100	_	E	Conspecifics	0 Parapatric
Rufous-naped lark Mirafra africana occidentalis	100	_	E	Conspecifics	0 Parapatric
Angola lark Mirafra a. angolensis	100	M	_	Conspecifics	0 Parapatric
Long-billed crombec Sylvietta rufescens ansorgei	100	_	E	Conspecifics	0 Parapatric
Green crombec Sylvietta virens tando	90	_	E	Conspecifics	320 Congo Basin
Laura's woodland warbler Phylloscopus 1. laurae	100	M	_	Conspecifics	500 NW Zambia
Evergreen forest warbler Bradypterus lopezi boultoni	100	M	_	Conspecifics	1,200 NC Zambia
Little rush warbler Bradypterus baboecala	100	M	_	Conspecifics	0 Parapatric
benguellensis					
Wailing cisticola Cisticola lais namba	100	M	_	Conspecifics	2,000 E Zambia/SW Tanzania

Species	Ass	M	E	Closest relative	D	Location of relative
Chirping cisticola Cisticola p. pipiens	100	M	_	Conspecifics	0	Parapatric
Croaking cisticola Cisticola natalensis huambo	90	M	-	Conspecifics	0	Parapatric
Desert cisticola Cisticola aridulus lobito	80	_	E	Conspecifics	0	Parapatric
Cloud cisticola Cisticola textrix bulubulu	75	M	_	Conspecifics	500	W Zambia
Banded prinia Prinia bairdii heinrichi	100	_	E	Conspecifics	320	W DRC
Buff-throated apalis Apalis rufogularis brauni	100	_	E	Conspecifics	100	N Scarp, but outside Angola in S
						DRC
Buff-throated apalis Apalis rufogularis angolensis	100	_	E	Conspecifics	250	C Scarp, but outside Angola in S
						DRC
Grey apalis Apalis cinerea grandis	100	M	-	Conspecifics, but could be brown-headed apalis A. alticola	2,000	If former, Cameroon/Albertine
						Rift, if latter, parapatric
Miombo wren-warbler Calamonastes undosus huilae	75	M	_	Conspecifics	0	Parapatric
Barred wren-warbler Calamonastes fasciolatus	100	_	E	Conspecifics	0	Parapatric
pallidior						
Brown illadopsis Illadopsis fulvescens dilutior	100	_	E	Conspecifics	320	Congo Basin
Black-faced babbler Turdoides melanops angolensis	100	_	E	Conspecifics	0	Parapatric
African thrush Turdus pelios bocagei	90	_	E	Conspecifics	0	Parapatric
Forest scrub robin Cercotrichas leucosticta reichenowi	100	_	E	Conspecifics	2,000	E DRC
Kalahari scrub robin Cercotrichas paena benguellensis	100	_	E	Conspecifics	0	Parapatric
Brown-chested alethe Chamaetylas poliocephala hallae	100	_	E	Conspecifics	320	W DRC
White-browed robin-chat Cossypha heuglini	70	M	E	Conspecifics	0	Parapatric
subrufescens						
Bocage's akalat Sheppardia b. bocagei	100	M	_	Conspecifics	500	NW Zambia
Mountain wheatear Myrmecocichla monticola	100	M	_	Conspecifics	200	SW Angola
nigricauda						
Familiar chat Oenanthe familiaris angolensis	100	_	E	Conspecifics	0	Parapatric
Carmelite sunbird Chalcomitra f. fuliginosa	95	_	E	Conspecifics	0	Parapatric
Bronzy sunbird Nectarinia kilimensis gadowi	100	M	_	Conspecifics	2,000	NE Zambia/E
						Zimbabwe/Albertine Rift
Purple-banded sunbird Cinnyris b. bifasciatus	75	_	E	Conspecifics	800	NE Namibia
Oustalet's sunbird Cinnyris o. oustaleti	100	M	_	Conspecifics	2,000	NE Zambia

Species	Ass	M	E	Closest relative	D	Location of relative
Thick-billed weaver Amblyospiza albifrons tandae	90	-	Е	Conspecifics	800	W Zambia/Cameroon
Dark-backed weaver Ploceus bicolor amaurocephalus	100	_	E	Conspecifics	800	NE Angola
Red-headed malimbe Malimbus rubricollis praedi	100	-	E	Conspecifics	320	W DRC
Black bishop Euplectes gierowii gierowii	90	_	E	Conspecifics	1,900	Albertine Rift
Yellow bishop Euplectes capensis angolensis	70	M	_	Conspecifics	0	Parapatric
Fan-tailed widowbird Euplectes axillaris quanzae	100	_	E	Conspecifics	500	E Angola
White-winged widowbird Euplectes albonotatus	80	_	E	Conspecifics	800	W Zambia
asymmetrurus						
Grey-headed nigrita Nigrita canicapillus angolensis	100	_	E	Conspecifics	320	Cabinda
Dusky twinspot Euschistospiza c. cinereovinacea	100	M	_	Conspecifics	1,900	Albertine Rift
Jameson's firefinch Lagonosticta rhodopareia ansorgei	100	_	E	Conspecifics	800	NE Namibia
Common waxbill Estrilda astrild angolensis	100	M	_	Conspecifics	0	Parapatric
Nicholson's pipit Anthus nicholsoni palliditinctus	100	M	_	Conspecifics	0	Parapatric
Nicholson's pipit Anthus nicholsoni moco	100	M	_	Conspecifics	200	SW Angola
Black-faced canary Crithagra capistrata hildegardae	100	M	E	Conspecifics	0	Parapatric
Yellow-crowned canary Serinus flavivertex huillensis	100	M	_	Conspecifics	2,000	NE Zambia
Cape bunting Emberiza capensis bradfieldi	75	_	E	Conspecifics	0	Parapatric
Cape bunting Emberiza capensis nebularum	100	-	E	Conspecifics	0	Parapatric
ISOLATED POPULATIONS						
Western crested guineafowl Guttera v. verreauxi	100	-	E	Conspecifics	300	C Angola
Hartlaub's duck Pteronetta hartlaubii	100	_	E	Conspecifics	320	Cabinda
Freckled nightjar Caprimulgus tristigma lentiginosus	75	M	E	Conspecifics	500	W South Africa
Scarce swift Schoutedenapus m. myoptilus	100	M	_	Conspecifics	2,000	NE Zambia/E Zimbabwe/
						Albertine Rift
Böhm's spinetail Neafrapus b. boehmi	100	_	E	Conspecifics	500	NW Zambia
Mottled swift Tachymarptis a. aequatorialis	100	M	_	Conspecifics	800	Zimbabwe/E Zambia
Fernando Po swift Apus [barbatus] sladeniae	100	M	_	Conspecifics	2,000	Cameroon
Great blue turaco Corythaeola cristata	100	_	E	Conspecifics	320	Cabinda
Green turaco Tauraco persa persa	100	_	E	Conspecifics	320	Cabinda
Gabon coucal Centropus anselli	100	_	E	Conspecifics	320	Cabinda
Blue yellowbill Ceuthmochares aereus	100	_	E	Conspecifics	320	Cabinda

Species	Ass	M	E	Closest relative	D	Location of relative
Dusky long-tailed cuckoo Cercococcyx mechowi	100	-	Е	Conspecifics	320	Cabinda
Olive long-tailed cuckoo Cercococcyx olivinus	100	_	E	Conspecifics	320	Cabinda
Double-banded sandgrouse Pterocles bicinctus	100	-	E	Conspecifics	0	Parapatric
ansorgei						
Afep pigeon Columba unicincta	100	-	E	Conspecifics	320	Cabinda
African olive pigeon Columba arquatrix	100	M	_	Conspecifics	500	NW Zambia
Western bronze-naped pigeon Columba iriditorques	100	_	E	Conspecifics	320	Cabinda
Lemon dove Columba larvata	100	-	E	Conspecifics	500	NW Zambia
Congo serpent eagle Circaetus spectabilis	100	-	E	Conspecifics	320	Cabinda
Crowned eagle Stephanoaetus coronatus	100	-	E	Conspecifics	320	Cabinda
Rufous-breasted sparrowhawk Accipiter r. rufiventris	100	M	_	Conspecifics	2,000	NE Zambia
Augur buzzard Buteo augur	75	M	E	Conspecifics	800	NW Zimbabwe
Bar-tailed trogon Apaloderma vittatum	100	M	_	Conspecifics	2,000	NE Zambia/Albertine Rift
Eastern piping hornbill Bycanistes sharpii	100	-	E	Conspecifics	320	Cabinda
Black-casqued hombill Ceratogymna atrata	100	-	E	Conspecifics	320	Cabinda
Blue-throated roller Eurystomus gularis	100	_	E	Conspecifics	320	Cabinda
Chocolate-backed kingfisher Halcyon badia	100	-	E	Conspecifics	320	Cabinda
Blue-breasted kingfisher Halcyon malimbica	100	_	E	Conspecifics	320	Cabinda
African dwarf kingfisher Ispidina lecontei	100	-	E	Conspecifics	320	Cabinda
White-bellied kingfisher Corythornis leucogaster	100	_	E	Conspecifics	320	Cabinda
Black bee-eater Merops gularis	100	_	E	Conspecifics	320	Cabinda
Speckled tinkerbird Pogoniulus scolopaceus	100	_	E	Conspecifics	320	Cabinda
Red-rumped tinkerbird Pogoniulus atroflavus	100	-	E	Conspecifics	320	Cabinda
Yellow-throated tinkerbird Pogoniulus subsulphureus	100	-	E	Conspecifics	320	Cabinda
Hairy-breasted barbet Tricholaema hirsuta angolensis	75	-	E	Conspecifics	320	Cabinda
Eastern yellow-billed barbet Trachyphonus purpuratus	100	_	E	Conspecifics	320	Cabinda
Cassin's honeybird Prodotiscus insignis	100	_	E	Conspecifics	320	Cabinda
Willcocks's honeyguide Indicator willcocksi	100	_	E	Conspecifics	320	Congo Basin
Least honeyguide Indicator exilis	100	_	E	Conspecifics	320	Cabinda
African piculet Sasia africana	100	_	E	Conspecifics	320	Cabinda
Buff-spotted woodpecker Campethera nivosa	100		Е	Conspecifics	320	Cabinda

Species	Ass	M	E	Closest relative	D	Location of relative
Brown-eared woodpecker Campethera caroli	100	-	Е	Conspecifics	320	Cabinda
Yellow-crested woodpecker Chloropicus xantholophus	100	_	E	Conspecifics	320	Cabinda
Olive woodpecker Dendropicos griseocephalus	100	M	-	Conspecifics	800	NE Angola
ruwenzori						
Red-fronted parrot Poicephalus gulielmi	100	-	E	Conspecifics	320	Cabinda
African pitta Pitta a. angolensis	100	-	E	Conspecifics	320	Cabinda
Chestnut wattle-eye Platysteira castanea	100	-	E	Conspecifics	320	Cabinda
Black-necked wattle-eye Platysteira chalybea	100	-	E	Conspecifics	500	C Gabon
Many-coloured bushshrike Chlorophoneus multicolor	100	-	E	Conspecifics	500	Gabon
batesi						
Bocage's bushshrike Chlorophoneus bocagei	100	_	E	Conspecifics	320	W DRC
Gorgeous bushshrike Telophorus v. viridis	100	M	E	Conspecifics	800	W Zambia
Petit's cuckooshrike Campephaga petiti	100	_	E	Conspecifics	320	Cabinda
Purple-throated cuckooshrike Campephaga quiscalina	100	_	E	Conspecifics	320	Cabinda
Mackinnon's shrike Lanius mackinnoni	100	_	E	Conspecifics	320	W DRC
Black-winged oriole Oriolus nigripennis	100	_	E	Conspecifics	320	W DRC
Blue-headed crested flycatcher Trochocercus nitens	100	_	E	Conspecifics	320	Cabinda
Bates's paradise flycatcher Terpsiphone batesi	100	_	E	Conspecifics	320	Congo Basin
bannermani						
African blue flycatcher Elminia longicauda	100	-	E	Conspecifics	320	Congo Basin
Ashy tit Melaniparus cinerascens benguelae	100	_	E	Conspecifics	0	Parapatric
Yellow-throated nicator Nicator vireo	100	-	E	Conspecifics	320	Congo Basin
Slender-billed greenbul Stelgidillas gracilirostris	100	-	E	Conspecifics	320	Congo Basin
Plain greenbul Eurillas curvirostris	100	-	E	Conspecifics	320	Congo Basin
Yellow-whiskered greenbul Eurillas latirostris	100	_	E	Conspecifics	320	Congo Basin
Swamp palm bulbul Thescelocichla leucopleura	100	-	E	Conspecifics	320	Congo Basin
Red-tailed bristlebill Bleda syndactylus	100	_	E	Conspecifics	320	Congo Basin
Brazza's martin Phedina brazzae	90	M	_	Conspecifics	0	Sympatric
White-throated blue swallow Hirundo nigrita	100	_	E	Conspecifics	320	Congo Basin
Forest swallow Petrochelidon fuliginosa	100	_	E	Conspecifics	800	S Gabon
Yellow longbill Macrosphenus flavicans	100	_	E	Conspecifics	320	Congo Basin

Green hylia <i>Hylia prasina</i> Cit hylia <i>Pholidornis rushiae</i>	100 100	-	Е	- 10		
it hylia <i>Pholidornis rushiae</i>	100		L	Conspecifics	320	Congo Basin
	100	_	E	Conspecifics	320	Congo Basin
Red-faced cisticola Cisticola erythrops lepe	75	M	_	Conspecifics	0	Parapatric
Pale-crowned cisticola Cisticola c. cinnamomeus	75	M	_	Conspecifics	1,000	NW Zambia
Ving-snapping cisticola Cisticola a. ayresii	100	M	_	Conspecifics	1,000	NW Zambia
owland masked apalis Apalis binotata	100	_	E	Conspecifics	1,500	NE Gabon
Black-throated apalis Apalis j. jacksoni	100	_	E	Conspecifics	1,900	Albertine Rift
Yellow-browed camaroptera Camaroptera superciliari	s 100	_	E	Conspecifics	320	Congo Basin
Rufous-crowned eremomela Eremomela badiceps	100	_	E	Conspecifics	320	Congo Basin
Scaly-breasted illadopsis Illadopsis albipectus	100	-	E	Conspecifics	500	C DRC
African hill babbler Pseudoalcippe abyssinica ansorge	i 100	M	_	Conspecifics	2,000	NE Zambia/Albertine Rift/
						Cameroon
Southern hyliota Hyliota australis slatini	100	_	E	Conspecifics	0	Central Angola
Forest chestnut-winged starling Onychognathus	100	_	E	Conspecifics	320	Congo Basin
ulgidus						
Narrow-tailed starling Poeoptera lugubris	100	_	E	Conspecifics	320	W DRC
White-tailed ant thrush Neocossyphus poensis	100	_	E	Conspecifics	320	Congo Basin
Rufous flycatcher thrush Stizorhina fraseri	100	_	E	Conspecifics	320	Congo Basin
Orange ground thrush Geokichla gurneyi otomitra	100	M	_	Conspecifics	1,800	SE DRC
Fire-crested alethe Alethe castanea	100	_	E	Conspecifics	320	Congo Basin
Brown-backed scrub robin Cercotrichas hartlaubi	100	_	E	Conspecifics	2,000	E DRC/Cameroon
Grey-throated tit-flycatcher Myioparus griseigularis	100	_	E	Conspecifics	320	Congo Basin
Cassin's flycatcher Muscicapa cassini	100	_	E	Conspecifics	320	Congo Basin
Ousky-blue flycatcher Muscicapa comitata	100	_	E	Conspecifics	320	Congo Basin
Sooty flycatcher Muscicapa infuscata	100	_	E	Conspecifics	320	Congo Basin
cittle green sunbird Anthreptes seimundi	100	_	E	Conspecifics	320	Congo Basin
Grey-chinned sunbird Anthreptes tephrolaemus	100	_	E	Conspecifics	320	Congo Basin
Green-headed sunbird Cyanomitra verticalis	100	_	E	Conspecifics	320	Congo Basin
Blue-throated brown sunbird Cyanomitra cyanolaema	100	_	E	Conspecifics	320	Congo Basin
Dlive sunbird Cyanomitra olivacea	100	_	E	Conspecifics	320	Congo Basin
Green-throated sunbird Chalcomitra rubescens	100	_	E	Conspecifics	320	Congo Basin

Species	Ass	M	E	Closest relative	D	Location of relative
Olive-bellied sunbird Cinnyris chloropygius	100	-	Е	Conspecifics	320	Congo Basin
Superb sunbird Cinnyris superbus	100	-	E	Conspecifics	320	Congo Basin
Black-chinned weaver Ploceus nigrimentus	100	M	_	Conspecifies	800	NE Angola
Black-necked weaver Ploceus nigricollis	100	-	E	Conspecifics	320	Congo Basin
Yellow-mantled weaver Ploceus tricolor	100	-	E	Conspecifics	320	W DRC
Brown-capped weaver Ploceus insignis	100	_	E	Conspecifics	1,900	Albertine Rift
Crested malimbe Malimbus malimbicus	100	_	E	Conspecifics	320	W DRC
Woodhouse's antpecker Parmoptila woodhousei	100	_	E	Conspecifics	320	W DRC
ansorgei						
White-breasted nigrita Nigrita fusconotus	100	_	E	Conspecifics	320	Cabinda
Chestnut-breasted nigrita Nigrita bicolor	100	_	E	Conspecifics	320	Cabinda
Pale-fronted nigrita Nigrita luteifrons	100	_	E	Conspecifics	320	Cabinda
White-collared oliveback Nesocharis ansorgei	100	_	E	Conspecifics	1000	S DRC/Albertine Rift
Green twinspot Mandingoa nitidula schlegeli	100	_	E	Conspecifics	320	W DRC
Red-faced crimsonwing Cryptospiza reichenovii	100	M	E	Conspecifics	2,000	E Zimbabwe/NE
reichenovii						Zambia/Albertine Rift
Red-headed bluebill Spermophaga r. ruficapilla	100	_	E	Conspecifics	320	S DRC
Landana firefinch Lagonosticta landanae	90	M	E	Conspecifics	0	Parapatric
Black-and-white mannikin Lonchura bicolor	100	_	E	Conspecifics	320	Congo Basin
Magpie mannikin Lonchura fringilloides	100	_	E	Conspecifics	500	Gabon
Dusky indigobird Vidua funerea (Dusky Twinspot	100	M	_	Conspecifics	0	Parapatric
parasite)						
Mountain wagtail Motacilla clara	100	M	E	Conspecifics	800	NE Angola
Striped pipit Anthus lineiventris	100	M	_	Conspecifics	800	W Zambia
Bushveld pipit Anthus caffer	100	M	_	Conspecifics	800	W Zambia
Thick-billed seedeater Crithagra burtoni tanganjicae	100	M	_	Conspecifics	1,900	Albertine Rift