NE
 Namibian Journal of Environment

Environmental Information Service, Namibia for the Ministry of Environment, Forestry and Tourism, the Namibian Chamber of Environment and the Namibia University of Science and Technology.

The Namibian Journal of Environment (NJE) covers broad environmental areas of ecology, agriculture, forestry, agro-forestry, social science, economics, water and energy, climate change, planning, land use, pollution, strategic and environmental assessments and related fields. The journal addresses the sustainable development agenda of the country in its broadest context. It publishes four categories of articles: Section A: Research articles. High quality peer-reviewed papers in basic and applied research, conforming to accepted scientific paper format and standards, and based on primary research findings, including testing of hypotheses and taxonomical revisions. Section B: Research reports. High quality peer-reviewed papers, generally shorter or less formal than Section A, including short notes, field observations, syntheses and reviews, scientific documentation and checklists. Section C: Open articles. Contributions not based on formal research results but nevertheless pertinent to Namibian environmental science, including opinion pieces, discussion papers, meta-data publications, nonephemeral announcements, book reviews, correspondence, corrigenda and similar. Section D: Memoirs. Peerreviewed monographic contributions and comprehensive subject treatments (>100 pages), including collections of related shorter papers like conference proceedings.

NJE aims to create a platform for scientists, planners, developers, managers and everyone involved in promoting Namibia's sustainable development. An Editorial Committee ensures that a high standard is maintained.

ISSN: 2026-8327 (online). Articles in this journal are licensed under a Creative Commons Attribution-Non Commercial-NoDerivatives 4.0 License.

Chief Editor: K STRATFORD
Guest editor for this paper: M KROFEL

SECTION A: RESEARCH ARTICLES

Recommended citation format:
Périquet S, Crawford S, Naholo S, Stratford S \& Stratford K (2022) At home or passing through? Leopard population and spatial ecology on a private game reserve. Namibian Journal of Environment 6 A: 78-91.

[^0]
At home or passing through? Leopard population and spatial ecology on a private game reserve

S Périquet ${ }^{1}$, S Crawford ${ }^{2}$, S Naholo ${ }^{1}$, S Stratford 1 and K Stratford ${ }^{1}$

URL: https://www.nje.org.na/index.php/nje/article/view/volume6-periquet
Published online: $8^{\text {th }}$ September 2022
${ }^{1}$ Ongava Research Centre, Private Bag 12041, Ausspannplatz, Windhoek, Namibia. stephanie.periquet@gmail.com
${ }^{2}$ Ongava Game Reserve, PO Box 58, Okaukuejo, Namibia.
Date received: $23^{\text {rd }}$ February 2022; Date accepted: $28^{\text {th }}$ August 2022.

Abstract

Estimating large carnivore population size and understanding how individuals share space is crucial for their conservation, even more so now they are increasingly restricted to small, fenced game reserves where active management is often required. Combining data from GPS collars and camera traps, we estimated population size for leopards (Panthera pardus) on Ongava Game Reserve, northern Namibia, and investigated their spatio-temporal use of waterholes. Over three years of camera trapping, we identified a total of 29 individuals (including 12 adult or sub-adult females and 15 adult or sub-adult males). Based on the time interval over which they were observed, we defined 10 of these individuals as resident (four adult or subadult males and six adult or sub-adult females). The remaining 19 individuals (66%) were classified as transient. During the same period, we deployed two GPS collars, one on a resident adult male, the other on a resident adult female. Home range sizes from GPS data were estimated at $193 \mathrm{~km}^{2}$ for the male and $122 \mathrm{~km}^{2}$ for the female. Based on home range overlap found in the literature, we estimated Ongava's resident population to be composed of 2-4 males and 3-6 females. We found no evidence of exclusive use of waterholes by individuals, suggesting an absence of spatial avoidance. Our work highlights the importance of taking social status (resident vs transient) into account and of using multiple methods when estimating population size of leopards.

Keywords: camera trap, GPS collar, home range, leopard, Namibia, overlap, Panthera pardus, spatial ecology

INTRODUCTION

Estimating and monitoring the population sizes of carnivores is increasingly important in the current context of their global decline and even more so in small fenced game reserves where intensive management of predator populations is often required (Miller et al. 2013). Large carnivores are notoriously difficult to census due to their wide-ranging behaviour, elusive and nocturnal activities and their low density (Balme et al. 2009). However, as most large carnivore species are territorial at least to some extent, it is possible to use home size and overlap of a few individuals to produce an estimate of population size and/or density in a given area (e.g. Devens et al. 2018). In addition, for species in which individuals can be identified based on natural markings (e.g. stripes or spots), camera trapping has been used extensively to estimate carnivore population size (e.g. tigers, Panthera tigris, Karanth et al. 2004, cheetahs, Acinonyx jubatus, Broekhuis \& Gopalaswamy 2016). The leopard (Panthera pardus) is a highly secretive and adaptable species, capable of living in landscapes with high anthropogenic disturbance levels, including near large towns such as Mumbai, India (Odden et al. 2014) and Johannesburg, South Africa (Kuhn 2014). However, leopard populations are decreasing throughout their
range (Jacobson et al. 2016), for example by more than 30% in Southern Africa in the past 22 years (Stein et al. 2016). Due to their climbing abilities, leopards are not easily constrained by fences (Balme et al. 2007, du Preez et al. 2015) and thus cannot be effectively restricted within protected areas. These protected areas are often seen as sources for large predator populations, from which sub-adults disperse across neighbouring lands (sometimes across very long distances, such as the $\sim 200 \mathrm{~km}$ reported by Fattebert et al. 2015a) in search of free space to establish their own territory.

In this study, we focus on estimating population size and density of leopard on the Ongava Game Reserve bordering Etosha National Park in northern Namibia. Given that we might expect leopard populations to be composed of resident individuals (with established territories) and transients (either sub-adults looking to establish a territory or sub-dominant adults displaced from their territory), we also assess resident versus transient status. The reserve is dedicated to non-consumptive tourism, but despite intensive use for game-viewing tourism (as many as 15 safari vehicles driving through the reserve on a daily basis), leopards are rarely seen. However, Ongava represents a prime habitat for leopards, being mostly covered by rocky hills providing numerous caves and
refuges from competitors (namely lions, Panthera leo) and harbouring a high density of leopards' preferred prey (Hayward et al. 2006). We used camera traps deployed at waterholes over a 3 -year study period and identified individual leopards based on their coat patterns to produce estimates of population size. In addition, we investigated the potential for intraspecific competition which might be manifested in spatio-temporal avoidance in the use of waterholes.

METHODS

Study area

Ongava Game Reserve (Ongava hereafter) borders the south of Etosha National Park (Figure 1), covering an area of approximately $300 \mathrm{~km}^{2}$. At the time of the study, the boundary with Etosha was a low non-electrified cattle fence permeable to carnivores, but not to medium and large-sized herbivores, whereas all other fences were electrified high game fences. The habitat is termed Karstveld, with vegetation primarily (up to 70%) Colophospermum mopane shrub and woodland, with some savanna-like areas (about 30\%). Ongava's relief is mostly dolomite hills, with an open plain area in the southeast corner ($\sim 11 \mathrm{~km}^{2}$) and a well-defined ridge and small mountain covering about $6 \mathrm{~km}^{2}$ in the northern part of the reserve. The weather zone for the reserve is typical for semi-arid northern Namibia,
with an average annual rainfall of 380 mm (see Stratford \& Stratford 2011 for further details). There are several natural dams on the reserve, although most of these only contain water during the rainy season (January - March). Water is accessible all year at 12 waterholes spread across the reserve. We defined the wet season as the period from January to April during which water was still available in natural dams and ephemeral pans and the dry season as the period from May to December when water was only available at artificial waterholes where herbivores congregate.

Ongava supports a range of mammalian herbivores that are candidate prey species for leopards such as common duiker (Sylvicapra grimmia), black-faced impala (Aepyceros melampus petersi), springbok (Antidorcas marsupialis) and rock hyrax (Procavia capensis; Hayward et al. 2006) with an overall herbivore density of about 10.4 animals per km^{2} (Stratford and Stratford 2011).

Data collection

We used two methods to estimate the number of leopards on Ongava. First, we computed home range (HR) size from GPS data of two collared individuals (one adult male and one adult female) and used HR overlap metrics from the literature to calculate how many resident males and females would be predicted to have permanent HRs on Ongava. Second, we used

Figure 1: Location of camera traps deployed at 10 waterholes in Ongava Game Reserve, northern Namibia showing intensive (black triangles) and low (white triangles) monitoring locations. Figures indicate the number of leopard records at each location, including unidentified individuals.
camera traps deployed at waterholes across the reserve to identify individual leopards and estimate their number. Based on individual capture histories, we classified each individual as resident or transient and characterised their spatio-temporal overlap in waterholes usage.

Leopard collaring

We captured leopards in 2013 (February for the female, October for the male) in steel box traps deployed close to waterholes on suspected leopard trails. We baited traps with remains of carcasses and the trap door release was triggered by a conventional pressure plate. We monitored each trap using camera traps and implemented a remote alert system with a signal being triggered when the door was released allowing for a rapid response to minimise the time that animals were captive. Leopards were immobilised in the trap by a professional team using a CO_{2} dart gun (Dan Inject, www.dan-inject.com) with an induction dose of 350 mg of Zoletil (Vibrac RSA, Halfway House, RSA). Once sedated, we removed the animals from the trap to take measurements and fit a collar. Each individual received a 50 mg Zoletil IM top-up at some point in the procedure to keep the immobilisation stable. We then transferred the animals to a padded and ventilated recovery crate ($1 \times 1 \times 2 \mathrm{~m}$) close to the capture site and kept them enclosed until fully recovered from the anaesthetic, upon which they were released.

We fitted each leopard with a GPS radio-collar (Vectronic, Berlin) of weight adjusted to fit an adult male and adult female; 550 g and 280 g respectively. Both collars were equipped with VHF beacons, as well as automatic drop-offs (programmed to activate 12 months after deployment) to ensure collar recovery after the study period. Due to battery size difference (smaller for the female) to provide a full year of monitoring, we programmed the collars to record GPS locations every 3 h for the male and every 6 h for the female.

Camera trap survey

We deployed camera traps (Reconyx RC-55 and HC500) at 12 waterholes spread across the reserve (Figure 1) from January 2012 to December 2014 (see Appendix 1 for operation table of camera traps). Some waterholes ($\mathrm{n}=5$, see Figure 1) were part of an intensive monitoring programme, while the rest were monitored during shorter periods across the three years. To provide the best coverage of the waterhole area, we deployed multiple (2-5) camera traps simultaneously at a given waterhole, and pooled their data together, resulting in a single set of images defined as a single observation. We mounted each camera inside a stainless-steel protection case that had been bolted to a tree and additionally secured using a locking steel cable. We set the cameras to
record a sequence of 10 images separated by one second with a delay of 15 seconds between successive triggers. For some remote waterholes, we used a 30 second delay between sequences to extend the interval between trap servicing.

We identified individual leopards based on their unique coat patterns. Pattern comparisons were manually performed over several areas of the body, as small changes in posture, light, and picture quality between images complicate the process. Identification was helped by the fact that images recorded at night using infrared flash provide an enhanced contrast between dark spots and light coat. We developed a reference database for individual leopards, with a minimum of one picture for each side available for each individual. When possible, we determined the sex of each individual based on based on body size, size of dewlap, and the presence of external genitalia (Balme et al. 2012). From the camera trap images, it was not possible to accurately age individuals, and animals of adult size were therefore classified as adults or sub-adults.

GPS data analysis

Home range size and overlap

To allow for comparison with other studies, we defined HR and core for each leopard as 95% and 50% location based kernel respectively (Worton 1989). We used a fixed kernel density estimator using the reference smoothing factor href as recommended by Hemson et al. (2005). We calculated HR and core sizes using the whole dataset for each individual.

We computed HR and core overlap between the two individuals using percentage overlap to allow comparison with other studies. We also provided a measure of three-dimensional utilisation distribution overlap index (UDOI, Fieberg \& Kochanny 2005). UDOI values range from 0 (no overlap) to 1 when uniformly distributed utilisation distributions (UDs) overlap completely.

Prediction of the number of leopards present

Similarly to Devens et al. (2018), we estimated the resident leopard population size using HR size and overlap obtained from the literature (Table 1) to predict the number of possible HRs, N, for both sexes separately on Ongava using the following formula:

$$
N=\frac{\text { Ongava area }}{H R \text { size }-(\text { overlap } \times H R \text { size })}
$$

where Ongava area $=300 \mathrm{~km}^{2}$, $H R$ size is the size of the 95% kernel computed in this study and overlap is the value of percentage overlap taken from the literature. For each sex, we used the minimum and maximum overlap values taken from the literature to produce a resident leopard population size range for

Ongava. Density was calculated as the number of resident leopards per $100 \mathrm{~km}^{2}$.

Camera trap data

Resident versus transient individuals

We estimated the number of resident and transient leopards based on each individual's capture history from camera trapping. Residents were defined as individuals having a stable HR on Ongava that would lead to consistent captures over time, while transients were individuals with no defined HR and are thus passing though, spending an unpredictable amount of time on Ongava. Based on capture histories, we therefore defined residents as individuals captured at least twice per year for at least two consecutive years.

Spatio-temporal overlap in waterhole use
For each waterhole, we computed the number of identified leopards seen during each dry season for each sex separately. We restricted our analyses to the dry season as this was when most of the observations occurred (see Results).

For each identified individual observation, we computed the time elapsed since the last visit of another identified individual. If the previous individual was not identified, we discarded the observation. We calculated the time since the last visit for the overall dataset of identified leopards (i.e. time since the last visit by any other known individual irrespective of its sex) and each sex (i.e. time since last visit by a known male and a known female) separately.

Table 1: Leopard home range size and overlap as reported in published scientific literature. Numbers in brackets give the range of estimates and n is the number of individuals used in each case.

	Average home range size in $\mathbf{k m}^{2}$ (range, number of animals)		Home range estimation method	\% Overlap (range)		Reference
Study area	Adult male	Adult Female		Between males	Between females	
Waterberg farmland, Namibia	$\begin{gathered} 229 \\ (125-312, \mathrm{n}=3) \end{gathered}$	$\begin{gathered} 179 \\ (52-394, n=4) \end{gathered}$	95\% MCP	24	22	Marker \& Dickman (2005)
Khaudum Game Reserve, Namibia	$\begin{gathered} 451 \\ (210-1164, \mathrm{n}=6) \end{gathered}$	$\begin{gathered} 188 \\ (183-194, \mathrm{n}=3) \end{gathered}$	95\% MCP	$\begin{gathered} 46 \\ (18-59) \end{gathered}$	$\begin{gathered} 35 \\ (28-51) \end{gathered}$	Stander et al. (1997)
Hobatere Concession, Namibia	$\begin{gathered} 94.9 \\ (\mathrm{n}=1) \end{gathered}$	$\begin{gathered} 171.1 \\ (84.5-285.4, \mathrm{n}=5) \end{gathered}$	95\% Kernel		27.8	Stander (2001)
Waterberg farmland, Namibia	$\begin{gathered} 109 \\ (\mathrm{n}=1) \end{gathered}$	$\begin{gathered} 50 \\ (46-53, \mathrm{n}=2) \end{gathered}$	95\% Kernel		Existent but not quantified; no core overlap	Stein (2008), Stein et al. (2011)
Okonjima Nature Reserve, Namibia	$\begin{gathered} 100.2 \\ (71.4-221.5, \mathrm{n}=6) \end{gathered}$	$\begin{gathered} 72 \\ (70.8-73.2, \mathrm{n}=2) \end{gathered}$	95\% Kernel	26 Males overlap females by 31\%	4 Females overlap males by 38%	Stander \& Hanssen (2000)
Okonjima Nature Reserve, Namibia	$\begin{gathered} 21.7 \pm 10.1 \\ (\mathrm{n}=14) \\ 15.6 \pm 13.4 \\ (\mathrm{n}=9) \end{gathered}$	$\begin{gathered} 8.9 \pm 4.3 \\ (\mathrm{n}=14) \\ 7.8 \pm 1.3 \\ (\mathrm{n}=9) \end{gathered}$	100\% MCP From camera trap data	Extensive overlap with dispersing subadult males. All male HRs overlapped with at least one female home range	Limited overlap	Noack (2016)
Phinda Game Reserve, South Africa	$\begin{gathered} 74 \\ (\mathrm{n}=11) \end{gathered}$	$\begin{gathered} 30 \\ (\mathrm{n}=10) \end{gathered}$	95\% Kernel	23	18	Fatteberg et al. (2016)
Cederberg, South Africa	$\begin{gathered} 51 \\ (40-69, n=3) \end{gathered}$		95\% MCP	10-57		 Henley (1987)
Eastern and Western Cape, South Africa	$\begin{gathered} 179.5 \\ (71.7-690, \mathrm{n}=12) \end{gathered}$	$\begin{gathered} 72.5 \\ (34.8-150, \mathrm{n}=9) \end{gathered}$	95\% Kernel	$\begin{gathered} 15 \\ (\mathrm{n}=4) \end{gathered}$	$\begin{gathered} 0 \\ (\mathrm{n}=2) \end{gathered}$	$\begin{aligned} & \text { Devens et al. } \\ & \quad(2018) \end{aligned}$

We used R software (R Core Team 2022) to extract and analyse data using the packages adehabitatHR (Calenge 2006) and oSCR (Sutherland et al. 2019). Means are given \pm their standard error (SE) unless mentioned otherwise.

RESULTS

Spatial ecology from GPS data

GPS data were collected for 365 days (November 2013 to October 2014, 2790 locations) for the male and 314 days (March to December 2013, 1125 locations) for the female. Both individuals established spatially and temporally stable HRs and we thus classified them as resident. While the male was never recorded outside the reserve, $5.6 \%(n=63)$
of the female GPS locations were outside the reserve fence. The male had both a larger HR ($192.8 \mathrm{~km}^{2}$ versus $121.8 \mathrm{~km}^{2}$) and a larger core than the female ($51.7 \mathrm{~km}^{2}$ versus $22.1 \mathrm{~km}^{2}$, Figure 2). From the male's perspective, 40% of its HR and 18% of its core was overlapped by the female HR and core respectively. From the female's perspective, 64% of its HR and 41% of its core was overlapped by the male HR and core respectively (Figure 2). UDOI was 0.39 for HR and 0.05 for cores, showing different space use of the area shared by the two individuals.

Camera trapping

Camera traps were deployed for the three-year study period (from January 2012 to November 2014) with trapping effort varying across waterholes from four

Figure 2: a) Male and b) female leopard home ranges (HRs) computed using location-based fixed kernels showing utility distribution. Core areas (50% kernel isopleth) are shown as red dashed lines. Dark grey polygons represent ridges and mountainous areas.
days to 915 days (Figure 1, Appendix 1). Across all waterholes, traps were operational for a total of 5283 days.

We collected 407 independent observations of leopards across 10 of the 12 waterholes surveyed (Appendix 2, Figure 1). Trapping rate, defined as the percentage of active trap nights on which leopards were observed, was low and averaged $6.2 \pm 4.8 \%$ (range: 0.3-13.1). Most of the observations (96.3\%) occurred during the dry seasons, with only 15
observations during the wet seasons across the three years (Figures 3 and 4).

Leopards were observed alone on 396 occasions, and in pairs on 11 occasions. We identified 29 individuals (12 adult or sub-adult females, 15 adult or sub-adult males and two juveniles of unknown sex) from 245 observations (i.e. individual identification was possible for 60% of the sightings across the whole study period). Among the 11 pairs observed, four were of a male and a female, three involved at least

Figure 3: Acquisition rate of new individuals during the study period (three years) of camera trapping on Ongava Game Reserve. Shaded areas represent wet seasons.

Figure 4: Individual leopard capture histories and status. Transient individuals are represented by triangles and resident individuals by circles. Collar deployment and removal are shown with vertical arrows. Shaded areas represent wet seasons.
one female with an unknown individual, three involved at least one male and in the last case we could not identify either of the individuals.

Known individuals were observed between one and 75 times during the three-year study period with eight individuals seen more than 10 times and 16 seen five times or fewer (Figure 4 and Appendix 2). We classified four males and six females as resident, resulting in 66% of the population being composed of transients.

Population size predictions

In the literature, within-sex HR overlaps for resident individuals range from 20% to 60% (Table 1) with
no core overlap. Therefore, we would predict 2-4 resident males (HR size estimated at $193 \mathrm{~km}^{2}$) and 36 resident females (HR size estimated at $121 \mathrm{~km}^{2}$) on the $300 \mathrm{~km}^{2}$ of Ongava Game Reserve. This would result in a density of 1.7-3.3 leopards $/ 100 \mathrm{~km}^{2}$.

Spatio-temporal overlap in waterhole use

Based on the 12 individuals (six males and six females) observed more than five times during the study period, leopards used on average 2.7 ± 1.9 waterholes (range: 1-8). Males tend to use a higher number of waterholes ($3.0 \pm 2.5,1-8$) compared to females $(2.0 \pm 0.6,1-3)$. A maximum of eight individuals were observed using the same waterhole within a given dry season (Figure 5a).

Figure 5: Spatio-temporal overlap in waterhole visitation by individual leopards. a) Number of identified leopards at each camera trap location for each year (top to bottom 2012, 2013 and 2014) of trapping. Black triangles show intensely monitored waterholes while white triangles represent waterholes monitored less intensively. b) Time (in hours) since the last visit of a given waterhole by another identified leopard for resident and transient females and resident and transient males. Error bars represent standard errors, N gives the sample size over which the mean was computed.

On most of the nights $(94.4 \%, \mathrm{n}=204)$ during which leopards could be seen and identified, only one individual was observed at any given waterhole. On $4.6 \%(n=10)$ and $1 \%(n=2)$ of nights, two and three leopards were observed at the same waterhole respectively.

Time elapsed between the visit of any leopard at a given waterhole (same individual or not) averaged 6.5 days ± 12.8 hours (12 minutes to 69 days, Figure 5b). A given individual would revisit the same waterhole with an average interval of 14.9 days ± 1.2 hours (12 minutes to 129.9 days) while visits between different individuals were separated by 13.1 ± 3.2 days on average (51 min to 18.3 days). Females visited a waterhole on average 25.5 ± 3.6 days after another female and 25.0 ± 2.6 days after a male (Figure 5b). Males visited a waterhole on average 25.2 ± 2.8 days after another male and 22.1 ± 2.2 days after a female (Figure 5b)

DISCUSSION

Resident leopard space use

We found that leopard HR sizes on Ongava were well within the known range for the species and that the male had a larger HR than the female, as reported elsewhere (e.g. Snider et al. 2021, Rodríguez-Recio et al. 2022, and see Table 1). The female had a HR size larger than the average reported for Africa overall but confirms that leopards in Namibia have larger HRs than in other African countries (Snider et al. 2021, Rodríguez-Recio et al. 2022). Leopards on Ongava were not significantly constrained by fences (as the female repeatedly crossed the eastern boundary fence, even though it was an electrified high game fence), which has been observed in other areas such as Phinda Game Reserve, South Africa (Fattebert et al. 2015b). HR overlap between the male and the female was high. This has been reported in other areas (e.g. Odden \& Wegge 2005, du Preez 2014, Fattebert et al. 2016) and is typical in species with a polygynous mating system, where females defend exclusive territories and male HRs overlap with several females, therefore accessing more mating opportunities (e.g. cougar, Puma concolor, Elbroch et al. 2016). The UDOI was low, especially for cores, which suggests some extent of resource partitioning between the male and female. This might be due to difference in diet as female leopards have been shown to have a wider and more opportunistic diet (Voigt et al. 2018). This could also result from females trying to avoid males to avoid infanticide which is common in this species, with up to 40% of cub mortality caused by males (Balme et al. 2012, Balme \& Hunter 2013). HR cores were mainly located over the northern ridge, which highlights the importance of this habitat for leopards. In South Africa, leopards have also been shown to select for
habitat of intermediate ruggedness and make use of steep slope areas (Fattebert et al. 2015b, Mann et al. 2020). Ridges most probably provide ideal habitat for hunting and resting (dense vegetation and rocky outcrops) and are rich in leopards' preferred prey such as rock hyrax and small antelopes (e.g. common duiker or Kirk's dik-dik, Madoqua kirkii, Hayward et al. 2006). Ridges could also provide refuges from competitors like lions and spotted hyaenas (Crocuta crocuta). Leopards have also been shown to react less strongly to lions in closed habitats such as are found on Ongava's ridges (du Preez 2014). However, since ridges only cover a small proportion of Ongava, the availability of this optimal habitat could restrict the number of leopards that could establish stable HRs in Ongava, despite the abundance of prey.

Leopard population on Ongava

There was an apparent discrepancy between the number of individuals that we predicted might reside in Ongava based on HR overlap and camera trap data. While HR overlap has been used elsewhere to estimate leopard density (Devens et al. 2018), it can only be applied to estimate the resident population size, and therefore might underestimate the total number of individuals that can be present on the reserve at any given time. On the other hand, not examining capture histories from camera trap surveys in detail (e.g. number of observation and temporal distribution of these observations) would lead to an overestimation of population size (i.e. a total of 29 adults or sub-adults in the population, while only a subset of these were actually residing on the reserve). HR overlap predicts 5-10 resident leopards on Ongava, and this is in agreement with the number of residents that were identified from the capture history (a maximum of four resident males and six resident females). The resulting density of 1.7-3.3 leopards $/ 100 \mathrm{~km}^{2}$ falls within the range of density estimates across their range (Allen et al. 2020) and in Namibia (Richmond-Coggan 2019; see Figure 6). Leopard density on Ongava is far lower than that estimated for Okonjima Nature Reserve in Namibia (estimated at 14.5 leopards per $100 \mathrm{~km}^{2}$, Noack et al. 2019), where the surrounding 2.4 m high electrified fences do appear to effectively constrain leopard movement.

Transients might be young adults or sub-adults dispersing across the landscape in search of a territory. These individuals might find it difficult to displace mature resident animals. That our collared male was still recorded with very good body condition in 2019 (pers. obs.), some six years after he was collared, suggests that resident leopards on Ongava may have long tenures.

Figure 6: A comparison of leopard densities adapted from Allen et al. (2020) showing Ongava's lower and upper estimates (black) and an estimate for Okonjima Game Reserve, central Namibia (dark grey).

Relationships between individuals

We did not find any evidence of spatial partitioning in the use of waterholes since several individuals made use of the same waterhole within a few hours of each other. This suggests that there is little competition for access to water and that multiple residents can use common waterholes in overlapping zones of their HRs. Social large carnivores such as lions and spotted hyaenas usually have exclusive use of waterholes within their territories (e.g. Valeix et al. 2011, Périquet 2014), which represent prey hotspots and prime hunting grounds. However, permanent waterholes might not be as important for leopards who can find their preferred prey elsewhere and meet their water requirements from other water sources. Leopards on Ongava were rarely seen together, which is characteristic of this solitary species (Bailey 1993) but does not necessarily result from temporal partitioning in activity patterns. Several studies (e.g. Havmøller et al. 2020, Rouse et al. 2021) have shown leopards to be mainly nocturnal and not to display significant differences in activity between males and females, despite some fine scale differences in time of activity peaks. Nevertheless, the very low number of simultaneous observations of multiple individuals, but the short time span between visits from different individuals suggests that subordinate individuals might wait for dominant ones to leave the waterhole before coming to drink. Such a fine-scale spatio-temporal avoidance has also been suggested for leopards in Iran (Rouse et al. 2021).

Limitations and way forward

It is clear from the GPS data that fences did not constrain leopard movement within the reserve boundaries, and we did not account for individuals having only part of their HR on the reserve.

Therefore, our prediction of the resident population size may be an underestimate. We also had a very small sample size for collared individuals, and it would be beneficial to equip leopards with GPS collars in other parts of the reserve to better understand their spatial ecology.

We found that many camera trap images failed to yield positive identification of animals and that capture rate was low, especially during the wet season. The camera traps were not deployed specifically to capture leopards but to survey waterholes in a more general way. Additionally, since leopards were observed drinking at other water sources (e.g. leaks in pipes, sewage overflows) during the study, our reported trapping frequency did not reflect drinking frequency. We would therefore recommend that future studies use camera trapping to concentrate efforts in the dry season (when capture rate will be the highest) and employ the traps in ways that maximise the potential for individual identification. Placing two camera traps facing each other has successfully been used for tigers and leopards along trails (e.g. Karanth et al. 2004, Chapman \& Balme 2010), although this might be difficult to implement at waterholes.

We found that identifying resident and transient individuals from their capture histories can be misleading. For instance, while the female's GPS data clearly showed that she was resident, she was only captured on camera trap three times during the entire tracking period (Figure 4), and would have therefore been naively classified as transient. This also suggests once more that leopard drink from sources other than waterholes. Baiting camera trap stations has also been found to significantly increase capture rates (e.g. du Preez et al. 2014, Tarugara et al. 2019).

This study raises many questions about the transient part of the leopard population, which on a yearly basis can represent $20-70 \%$ of the population. Despite having a sizable lion population, Ongava provides an optimal environment for leopard with high habitat suitability and high prey availability. Due to its location between private farmlands where leopards might be trophy hunted and/or persecuted over livestock losses, and the sub-optimal habitat in the neighbouring area of Etosha, we argue that Ongava is highly attractive to leopards, hence the high number of individuals observed on camera traps. At this stage, we do not know where transients come from or go to once leaving Ongava, and we encourage further work to investigate these questions, most probably via tracking devices.

Our work highlights the importance of taking into account the social status of individuals when estimating and presenting population size estimate. This has already been demonstrated in cheetahs (Edwards et al. 2018) and failure to do this might yield highly biased estimates. We also call attention to the value of using multiple methods to approach population estimates for species as elusive as leopard.

ACKNOWLEDGEMENTS

We would like to thank Ongava's Anti-Poaching Teams and Abigail Guerier for assistance with the servicing of camera traps. GPS collars and camera traps were sponsored by the Directors of Ongava Game Reserve and West Midland Safari Park (via the Namibian Wildlife Conservation Trust, UK). Additional camera traps were also sponsored by Premier Tours, Philadelphia, USA. Veterinary costs were sponsored by The Zoological Society of Philadelphia, USA. This research was authorised by MET research permits 1748/2012, 1843/2013 and 1962/2014 (GPS collars), and 1685/2012 and 1797/2013 (camera traps).

We thank two anonymous reviewers and Miha Krofel for their constructive comments on previous versions of this manuscript.

REFERENCES

Allen ML, Wang S, Olson LO, Li Q, Krofel M (2020) Counting cats for conservation: seasonal estimates of leopard density and drivers of distribution in the Serengeti. Biodiversity and Conservation 29(13): 35913608. https://doi.org/10.1007/s10531-020-02039-w.

Bailey T (1993) The African Leopard: Ecology and Behavior of a Solitary Felid. Columbia University Press, New York, USA.
Balme GA, Batchelor A, Britz N de W, Seymour G, Grover M, Hes L, Macdonald DW, Hunter LTB (2012) Reproductive success of female leopards Panthera pardus: the importance of top-down processes. Mammal Review 43(3): 221-237. https://doi.org/10.1111/j.13652907.2012.00219.x.

Balme GA, Hunter LTB (2013) Why leopards commit infanticide. Animal Behaviour 86(4): 791-799.
https://doi.org/10.1016/j.anbehav.2013.07.019
Balme GA, Hunter LTB, Slotow R (2007) Feeding habitat selection by hunting leopards Panthera pardus in a woodland savanna: prey catchability versus abundance. Animal Behaviour 74(3): 589-598.
Balme GA, Hunter LTB, Slotow R (2009) Evaluating methods for counting cryptic carnivores. Journal of Wildlife Management 73(3): 433-441. https://doi.org/ 10.2193/2007-368.

Broekhuis F, Gopalaswamy AM (2016) Counting cats: spatially explicit population estimates of cheetah (Acinonyx jubatus) using unstructured sampling data. PLoS ONE 11(5): e0153875. https://doi.org/10.1371/ journal.pone. 0153875.
Calenge C (2006) The package "adehabitat" for the R software: A tool for the analysis of space and habitat use by animals. Ecological Modelling 197(3-4): 516-519. https://doi.org/10.1016/j.ecolmodel.2006.03.017.
Chapman S, Balme GA (2010) An estimate of leopard population density in a private reserve in KwaZulu-Natal, South Africa, using camera-traps and capture-recapture models. South African Journal of Wildlife Research 40(2): 114-120. https://doi.org/10.3957/056.040.0202.
Devens C, Tshabalala T, McManus J, Smuts B (2018) Counting the spots: The use of a spatially explicit capture-recapture technique and GPS data to estimate leopard (Panthera pardus) density in the Eastern and Western Cape, South Africa. African Journal of Ecology 56(4): 850-859. https://doi.org/10.1111/aje. 12512.
Edwards S, Fischer M, Wachter B, Melzheimer J (2018) Coping with intrasexual behavioral differences: Capturerecapture abundance estimation of male cheetah. Ecology and Evolution 8: 9171-9180. https://doi.org/10.1002/ ece3.4410.
Elbroch LM, Lendrum PE, Quigley H, Caragiulo A (2016) Spatial overlap in a solitary carnivore: support for the land tenure, kinship or resource dispersion hypotheses? Journal of Applied Ecology 85(2): 487-496. https://doi.org/10.1111/1365-2656.12447.
Fattebert J, Balme GA, Dickerson T, Slotow R, Hunter LTB (2015a) Density-Dependent natal dispersal patterns in a leopard population recovering from over-harvest. PLoS ONE 10(4): e0122355. https://doi.org/ 10.1371/journal.pone.0122355.s001.

Fattebert J, Balme GA, Robinson HS, Dickerson T, Slotow R, Hunter LTB (2016) Population recovery highlights spatial organization dynamics in adult leopards. Journal of Zoology 299(3): 153-162. https://doi.org/10.1111/ jzo. 12344.
Fattebert J, Robinson HS, Balme GA, Slotow R, Hunter LTB (2015b) Structural habitat predicts functional dispersal habitat of a large carnivore: how leopards change spots. Ecological Applications 25(7): 1911-1921. https://doi.org/10.1890/14-1631.1.sm.
Fieberg J, Kochanny CO (2005) Quantifying home-range overlap: the importance of the utilization distribution. Journal of Wildlife Management 69(4): 1346-1359. https://doi.org/10.2193/0022-541X.
Havmøller RW, Jacobsen NS, Scharff N, Rovero F, Zimmermann F (2020) Assessing the activity pattern overlap among leopards (Panthera pardus), potential prey and competitors in a complex landscape in Tanzania. Journal of Zoology 311: 175-182. https://doi.org/10.1111/jzo.12774.
Hayward MW, Henschel P, O’Brien J (2006) Prey preferences of the leopard (Panthera pardus). Journal of Zoology 270: 298-313

Hemson G, Johnson P, South A, Kenward RE, Ripley R, Macdonald DW (2005) Are kernels the mustard? Data from global positioning system (GPS) collars suggests problems for kernel home-range analyses with leastsquares cross-validation. Journal of Animal Ecology 74(3): 455-463. https://doi.org/10.1111/j.1365-2656. 2005.00944.x.

Jacobson AP, Gerngross P, Lemeris Jr JR, Schoonover RF, Anco C, Breitenmoser-Würsten C et al. (2016) Leopard (Panthera pardus) status, distribution, and the research efforts across its range. PeerJ 4(1): e1974-28 https://doi.org/10.7717/peerj. 1974.
Karanth KU, Chundawat RS, Nichols JD, Kumar NS (2004) Estimation of tiger densities in the tropical dry forests of Panna, Central India, using photographic capture-recapture sampling. Animal Conservation 7(3): 285-290. https://doi.org/10.1017/S1367943004001477.
Kuhn BF (2014) A preliminary assessment of the carnivore community outside Johannesburg, South Africa. South African Journal of Wildlife Research 44(1): 95-98 https://doi.org/10.3957/056.044.0106.
Mann GKH, O'Riain MJ, Parker DM (2020) A leopard's favourite spots: Habitat preference and population density of leopards in a semi-arid biodiversity hotspot. Journal of Arid Environments 181: 104218. https://doi.org/10.1016/j.jaridenv.2020.104218.
Marker LL, Dickman AJ (2005) Factors affecting leopard (Panthera pardus) spatial ecology, with particular reference to Namibian farmlands. South African Journal of Wildlife Research 35(2): 105-115. https:// journals.co.za/content/wild/35/2/EJC117223.
Miller SM, Bissett C, Burger A, Courtenay B, Dickerson T, Druce DJ et al. (2013) Management of reintroduced lions in small, fenced reserves in South Africa: an assessment and guidelines. South African Journal of Wildlife Research 43(2): 138-154. http://www.bioone.org/doi/ abs/10.3957/056.043.0202.
Noack J (2016) The assessment of leopard (Panthera pardus) density and population size via a capture recapture framework in an island bound conservation area in Namibia. Unpublished report: AfriCat Namibia. https://africat.org/wp-content/uploads/2018/10/
africat_foundationprogress_report_leopard_density_stu dy_1.pdf.
Noack J, Heyns L, Rodenwoldt D, Edwards S (2019) Leopard density estimation within an enclosed reserve, Namibia using spatially explicit capture- recapture models. Animals 9(10): 724. https://doi.org/10.3390/ ani9100724.
Norton PM, Henley SR (1987) Home range and movements of male leopards in the Cedarberg Wilderness Area, Cape Province. South African Journal of Wildlife Research 17(2): 41-48. https://journals.co.za/ content/wild/17/2/AJA03794369 3497.
Odden M, Athreya V, Rattan S, Linnell JD (2014) Adaptable neighbours: Movement patterns of GPScollared leopards in human dominated landscapes in India. PLoS ONE 9(11): e112044-9. https://doi.org/ 10.1371/journal.pone. 0112044.

Odden M, Wegge P (2005) Spacing and activity patterns of leopards Panthera pardus in the Royal Bardia National Park, Nepal. BioOne 11(2): 145-152. https://doi.org/ 10.2981/0909-6396.

Périquet S (2014) Sharing the top: How do spotted hyaenas cope with lions? Apex predator coexistence in a wooded savanna. PhD, Université Claude Bernard, Lyon 1, Lyon, France.
du Preez BD (2014) The impact of intraguild competition with lion Panthera leo on leopard Panthera pardus behavioural ecology. PhD, University of Oxford, Oxford, UK.
du Preez B, Hart T, Loveridge AJ, Macdonald DW (2015) Impact of risk on animal behaviour and habitat transition probabilities. Animal Behaviour 100(C): 22-37. https://doi.org/10.1016/j. anbehav.2014.10.025
du Preez BD, Loveridge AJ, Macdonald DW (2014) To bait or not to bait: A comparison of camera-trapping methods for estimating leopard Panthera pardus density. Biological Conservation 176(C): 153-161. https:// doi.org/10.1016/j.biocon.2014.05.021.
R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Richmond-Coggan L (2019) National Leopard Census Project. Unpublished report.
Rodríguez-Recio M , Burgos T , Krofel M , Lozano J, Moleón M, Virgós E (2022) Estimating global determinants of leopard home range size in a changing world. Animal Conservation. https://doi.org/ 10.1111/acv. 12777.

Rouse S, Behnoud P, Hobeali K, Moghadas P, Salahshour Z, Eslahi H et al. (2021) Intraspecific interactions in a high-density leopard population. Ecology and Evolution 11(23): 16572-16584. https://doi.org/10.1002/ece3. 8227.

Snider MH, Athreya VR, Balme GA, Bidner LR, Farhadinia MS, Fattebert J et al. (2021) Home range variation in leopards living across the human density gradient. Journal of Mammalogy 102(4): 1138-1148. https://doi.org/10.1093/jmammal/gyab068.
Stander PE (2001) Predator Research Programme Research Progress Report May 2001. pp. 1-18.
Stander PE, Haden PJ, Kaqece, Ghau (1997) The ecology of asociality in Namibian leopards. Journal of Zoology 242: 343-364.
Stander PE, Hanssen L (2000) Predator Research Programme Research Progress Report October 2000. Unpublished report: pp. 19.
Stein AB (2008) Ecology and conservation of the leopard (Panthera pardus linnaeus 1758) in northcentral Namibia. PhD, University of Massachusetts Amherst.
Stein AB, Athreya V, Gerngross P, Balme GA, Henschel P, Karanth U et al. (2016) Panthera pardus. http://www.iucnredlist.org/details/15954/0.
Stein AB, Fuller TK, DeStefano S, Marker LL (2011) Leopard population and home range estimates in northcentral Namibia. African Journal of Ecology 49(3): 383387. https://doi.org/10.1111/j.1365-2028.2011.01267.x.

Stratford KJ, Stratford SMC (2011) Fine-scale movements and use of space by spotted hyaena (Crocuta crocuta) on Ongava Game Reserve, Namibia. African Journal of Ecology 49(3): 343-352. https://doi.org/10.1111/j.13652028.2011.01270.x.

Sutherland C, Royle JA, Linden DW (2019) oSCR: A spatial capture-recapture R Package for inference about spatial ecological processes. Ecography: 42(9): 14591469. ecog.04551-17. https://doi.org/10.1111/ecog. 04551.

Tarugara A, Clegg BW, Gandiwa E, Muposhi VK (2019) Cost-benefit analysis of increasing sampling effort in a baited-camera trap survey of an African leopard (Panthera pardus) population. Global Ecology and Conservation 18: e00627. https://doi.org/10.1016/ j.gecco.2019.e00627

Valeix M, Chamaillé-Jammes S, Loveridge AJ, Davidson Z, Hunt JE, Madzikanda H, Macdonald DW (2011) Understanding patch departure rules for large carnivores: lion movements support a patch disturbance hypothesis. The American Naturalist 178(2): 269-275. https://doi.org/10.1086/660824.
Voigt CC, Krofel M, Menges V, Wachter B, Melzheimer J (2018) Sex-specific dietary specialization in a terrestrial
apex predator, the leopard, revealed by stable isotope analysis. Journal of Zoology 306(1): 1-7. https://doi.org/10.1111/jzo. 12566.
Worton BJ (1989) Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70(1): 164-168. http://www.esajournals.org/doi/abs/ 10.2307/1938423.

Appendix 1: Trapping effort at each waterhole. Grey shading indicates intensively monitored waterholes.

Waterhole	Session	Start	Stop		
Andersson's AND	1	17/09/2013	28/09/2013	11	27
	2	01/10/2014	17/10/2014	16	
Bobbejaan's Pos BOB	1	02/10/2014	18/10/2014	16	16
Lodge LOD	1	22/10/2012	01/11/2012	10	69
	2	11/05/2013	17/06/2013	37	
	3	05/09/2014	11/09/2014	6	
	4	01/10/2014	17/10/2014	16	
Margo MAR	1	10/01/2012	05/11/2012	300	915
	2	24/04/2013	30/12/2014	615	
Onduri OND	1	17/07/2012	01/11/2012	107	566
	2	27/04/2013	28/09/2013	154	
	3	05/03/2014	04/01/2015	305	
Ongarangombe ONG	1	27/09/2012	01/10/2012	4	359
	2	07/05/2013	28/09/2013	144	
	3	20/03/2014	17/10/2014	211	
OTC	1	01/01/2012	01/10/2012	274	405
	2	17/09/2013	25/09/2013	8	
	3	15/06/2014	19/06/2014	4	
	4	21/08/2014	18/12/2014	119	
Rainer's Pos RAI	1	10/01/2012	02/11/2012	297	405
	2	14/05/2013	22/05/2013	8	
	3	17/09/2013	27/09/2013	10	
	4	31/07/2014	18/10/2014	79	
	5	06/12/2014	17/12/2014	11	
Roland's Pos ROL	1	05/01/2012	03/11/2012	303	914
	2	04/05/2013	05/01/2015	611	
Sonop SON	1	27/09/2012	02/11/2012	36	134
	2	08/05/2013	22/05/2013	14	
	3	17/09/2013	27/09/2013	10	
	4	05/08/2014	18/10/2014	74	
Suiderkruis SUI	1	01/01/2012	02/11/2012	306	675
	2	30/04/2013	24/09/2013	147	
	3	10/03/2014	18/10/2014	222	
Tiervlei TIE	1	30/04/2012	31/10/2012	184	798
	2	24/04/2013	29/12/2014	614	
Total					5283

Appendix 2: Capture histories of individual leopards by waterhole. Grey shading indicates intensively monitored waterholes. Two waterholes (SON and AND) did not yield any leopard pictures. Waterholes are represented by the first three letters of their name; see Figure 1 for their location.

Individual	Sex	BOB	LOD	MAR	OND	ONG	OTC	ROL	RAI	SUI	TIE	Total
L1	Male	-	-	6	-	-	-	2	2	3	-	13
L2	Male	-	-	2	-	-	-	1	-	-	-	3
L3	Male	-	-	-	-	-	-	-	-	-	14	14
L4	Male	-	-	-	-	-	-	-	-	-	1	1
L5	Female	-	-	-	-	-	-	6	-	-	2	8
L6 (collared)	Male	-	1	34	17	4	1	-	6	6	6	75
L8 (collared)	Female	-	-	4	-	-	-	-	-	1	-	5
L10	Female	-	-	4	-	-	-	-	-	2	-	6
L11	Male	-	-	13	-	-	-	-	1	-	-	14
L12	Male	-	-	11	2	-	-	-	-	1	-	14
L13	Male	-	-	4	-	-	-	-	-	-	5	9
L14	Female	-	-	2	-	-	-	-	-	-	-	2
L15	Female	-	-	-	3	-	-	-	-	-	-	3
L16	Male	-	-	-	2	-	-	-	-	-	-	2
L17	Female	-	-	-	11	3	-	-	-	-	-	14
L18	Juvenile	-	-	-	1	-	-	-	-	-	-	1
L19	Female	-	-	-	-	-	-	1	-	-	-	1
L20	Female	-	-	-	-	-	-	-	3	-	-	3
L21	Male	-	-	-	-	-	-	-	1	-	-	1
L22	Female	-	-	-	-	-	-	-	13	12	1	26
L23	Female	-	-	-	-	-	-	-	-	3	-	3
L24	Female	-	-	-	-	-	-	-	-	20	-	20
L25	Male	-	-	-	-	-	-	-	-	1	-	1
L26	Female	-	-	-	-	-	-	-	-	4	-	4
L27	Male	-	-	-	-	-	-	-	-	2	-	2
L28	Male	-	-	-	-	-	-	-	-	3	-	3
L29	Male	-	-	-	-	-	-	-	-	-	3	3
L30	Juvenile	-	-	-	-	-	-	-	-	-	4	4
L31	Male	-	-	-	-	-	-	-	-	-	1	1
Unknown	NA	3	-	72	37	8	-	6	4	23	9	162
TOTAL		3	1	152	73	15	1	16	30	81	46	418

[^0]: Cover photo: AB Makhado

