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Appendix 1: Supplementary Material 
 
1. RAINFALL MODEL 

Fit a high dimensional smooth term to 156 locations of annual rainfall from 1999 to 2015 (2016/17 
unavailable at the time of modelling) to interpolate values for the presence locations and pseudo-
absence grid. 

require(mgcv) 
fit<-gam(meanrain ~ s(x.pos, y.pos,fx = TRUE, k=150), data=rainfall2) 
analysisdat$meanrain<-predict(object = fit,  
                    newdata = data.frame(x.pos = analysisdat$x.pos,  
                                        y.pos = analysisdat$y.pos)) 

The results of the interpolation model are shown in Figure 1. 



 

Figure 1 Covariate data in the study region. Distance to water (top), distance to roads (centre) and interpolated 
annual rainfall (bottom). 



2. PSEUDO-ABSENCE SELECTION 
 

• Grid spacings trialled: 5, 4, 3, 2, 1.5, 1.25 and 1 km 
• SALSA2D specification 

– knot grid: all non-duplicated presence locations 
– start knot number: 10, 20, 30, 40 
– min knots and max knots equal to start knot number. 
– distance metric: Euclidean 
– basis: Gaussian and exponential 

• Fit models for each specification of grid, start knots and basis 
• Evaluate the log-likelihood 
• Select the coarsest resolution after which, an increase in resolution makes little difference to 

the likelihood. 

Figure 2 shows the log-likelihood scores for the different parameterisations. The vertical dashed line 
indicates the best grid resolution; 2km2. 

 

 

Figure 2 Figure showing the convergence of the log-likelihood for for different spatial resolutions 
across multiple SALSA2D parameterisations. 

 

3. MODEL AVERAGING VS SALSA2D 
 
3.1 SALSA2D algorithm details 

The algorithm that drives SALSA2D has an iterative 3-step structure shown in the pseudo code in 
Figure 3. 



 

Figure 3 Pseudo-code outlining the structure of SALSA2D (adapted from Figure 1, Walker et al. 
(2010)), where 𝐾𝐾 is the number of knots used for fitting. 

 
3.1.1 Initialisation 

Each observed location, 𝑖𝑖, is considered a possible location for a knot position. To avoid estimation 
issues, only unique knot locations are considered giving 𝐾𝐾𝑙𝑙  legal knot locations. The user specifies a 
starting number of knots, 𝐾𝐾𝑠𝑠, where 𝐾𝐾𝑠𝑠 < 𝐾𝐾𝑙𝑙 , and these are selected from 𝐾𝐾𝑙𝑙  using a space-filling 
algorithm (Johnson, Moore, and Ylvisaker 1990). This method provides good coverage across the 
spatial region as a starting position for SALSA2D. Additionally, the minimum number of knots, 𝐾𝐾min 
(2 ≤ 𝐾𝐾min < 𝐾𝐾𝑠𝑠) and maximum number(𝐾𝐾max (𝐾𝐾𝑠𝑠 < 𝐾𝐾max ≤ 𝐾𝐾𝑙𝑙) are specified. 

To evaluate the basis function, the 𝑟𝑟𝑘𝑘-value for each basis must also be chosen. The SALSA2D 
algorithm selects from 𝑅𝑅 possible options for 𝑟𝑟𝑘𝑘 which range from a very local basis to a globally 
acting basis. The middle option which is neither very local or very global, is chosen to 4nitialize the 
first model. 

To ensure that the initial model fit has converged, there is a drop step component that is activated if 
the variance of the 4nitialized first model exceeds that of the simpler input model (the variance 
should not increase with additional parameters/flexibility in the model). If this occurs, knot locations 
with the largest contributions to the variance are removed one by one until the overall variance of the 
more complex model is lower than the input model. 

3.1.2 The simplify step 

Using the fit criteria specified, the simplify step compares the current model with all models obtained 
by removing an existing knot (as long as this is at least 𝐾𝐾min). At each iteration, the model with the 
best fitness measure is retained and the process repeated until there is no further improvement in the 
fitness measure. This step can be carried out by fixing 𝑟𝑟𝑘𝑘 or by choosing 𝑟𝑟𝑘𝑘 for each basis as each knot 
is dropped for comparison. 

3.1.3 The exchange step 

The exchange step increases the extent of the search of model space by enabling a move away from a 
local minima (of the fit criterion). It uses the maximum Pearson residual from the current fitted model 
to identify a possible candidate location for a new knot (although in theory other types of residuals 
could be chosen and we use an alternative metric for the point process models in the next sections). 
The algorithm then compares the objective fit criteria for these models that result when each of the 
existing knots in the current model is moved to this new location, and also the fit criteria from the 
model that results when an additional knot at this location is added to the current model (if this does 



not exceed 𝐾𝐾max). The model with the best fitness measure is retained in this step if it has a better 
fitness measure than the current model. Evaluation of each of these models can be very quick to 
return but this process is naturally more computationally expensive, if 𝑟𝑟𝑘𝑘 is also chosen for each basis 
function for each candidate model. In practice, the algorithm uses the knot locations of the five largest 
residuals as candidates for an exchange or move. 

3.1.4 The improve step 

The improve steps allows a more nuanced search of the local minima by allowing small adjustments 
to the location of each knot. Using the fit criteria specified, the improve step compares the current 
model with all models obtained by moving an existing knot to one of its five nearest neighbours 
(determined by the distance metric employed: geodesic or Euclidean). At each iteration, the model 
with the best fitness measure is retained. As with the exchange step, alternative choices for the (𝑟𝑟𝑘𝑘) 
parameter may be considered when fitting each new model and this process is likely to be swift at 
this stage. 

3.1.5 Determining 𝒓𝒓𝒌𝒌 

This routine considers incrementing or decrementing 𝑟𝑟𝑘𝑘 values in the sequence of 𝑅𝑅 possible values, 
where the sequence is selected using the method from Scott-Hayward et al. (2014). It can be evaluated 
either once at the end of the exchange, improve and simplify steps or as part of every decision taken 
during these steps. The process is done by considering each of the radial basis columns in turn, and 
incrementing or decrementing the 𝑟𝑟𝑘𝑘 values in the index until there is no improvement in the fitness 
measure. At each step the 𝑟𝑟𝑘𝑘-values for the other basis columns are maintained at the current solution. 
The best of these models is selected as the new current model, and the process iterates until no 
improvement is made. This process can have a large computational overhead and may significantly 
prolong the procedure but constitutes a broader search of the model space. 

3.2 Model specification 

To compare the performance of SALSA2D with model averaging as a model selection approach, 
models with a two dimensional smoother-based term for geographic locations were fitted to the 
MIKE data. The comparison involved either the published CreSS method which employs model 
averaging  or model selection using SALSA2D to determine knot number and location. 

The CreSS approach fits pure spatial regression models to a set of coordinates 𝐳𝐳𝑖𝑖 of the form: 

𝑔𝑔(𝐲𝐲𝑖𝑖) = 𝜂𝜂 = 𝛽𝛽0 + 𝑠𝑠(𝐳𝐳𝑖𝑖)  (1) 

where 𝑔𝑔 is the link function and 𝜂𝜂 the linear predictor. 𝐬𝐬 is a two dimensional surface approximated 
by a linear combination of exponential basis functions 𝑏𝑏𝑏𝑏. The formula for this basis function at 
observation 𝑖𝑖 and knot location 𝑘𝑘 is: 

𝑏𝑏𝐸𝐸𝑘𝑘𝑘𝑘 = exp�−ℎ𝑘𝑘𝑘𝑘/𝑟𝑟𝑘𝑘
2�  (2) 

where 𝑟𝑟𝑘𝑘 dictates the extent of the decay of this exponential function with distance between points, 
and thus the extent of its local nature. Notably ℎ𝑘𝑘𝑘𝑘 indicates a geodesic or Euclidean distance (for 
some observation 𝑖𝑖 and the 𝑘𝑘-th knot location). Parameter 𝑟𝑟𝑘𝑘 takes values such that if 𝑟𝑟𝑘𝑘 is small the 
model will have a set of relatively local basis functions and if 𝑟𝑟𝑘𝑘 is large the model will have a set of 
relatively global basis functions. The exact values of 𝑟𝑟𝑘𝑘 are dependent upon the range and units of the 
spatial covariates. 

As part of recent work, we have expanded the original CreSS approach to include a Gaussian radial 
basis to the choice of basis functions available for selection (alongside the existing exponential 
option). The two bases have different shapes, with the exponential being more peaked at the centre. 



These choices allow for more nuanced model fitting, akin to link function or distance metric choice. 
The Gaussian radial basis, 𝑏𝑏𝑏𝑏, is specified as: 

𝑏𝑏𝐺𝐺𝑘𝑘𝑘𝑘 = exp�−(ℎ𝑘𝑘𝑘𝑘𝑟𝑟𝑘𝑘)2�  (3) 

where 𝑟𝑟𝑘𝑘 and ℎ𝑘𝑘𝑘𝑘 are as defined for the exponential (Equation 2) except that for the Gaussian basis, a 
small value for 𝑟𝑟𝑘𝑘 returns a relatively global basis and a large 𝑟𝑟𝑘𝑘 value returns a relatively local basis. 

𝑌𝑌𝑖𝑖 ∼
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝜆𝜆(𝐗𝐗𝑖𝑖)� 

For this method comparison section, we model the intensity as a function of coordinates, 𝐱𝐱, only. 

log�𝜆𝜆(𝐗𝐗𝑖𝑖)� = 𝜂𝜂𝑖𝑖 = 𝛽𝛽0 + 𝑠𝑠(𝐱𝐱) = 𝐗𝐗𝑖𝑖𝑇𝑇𝛃𝛃  (4) 

where 𝜂𝜂𝑖𝑖 is the linear predictor, consisting of the intercept, 𝛽𝛽0, and a smooth function of coordinates, 
s(𝐱𝐱). The smooth function is either the exponential or Gaussian basis function. 

For both the model averaging and SALSA2D methods, the following specifications were used to 
return the columns of the design matrix 𝐗𝐗 in Equation 4: 

• Two basis options: Exponential (𝑏𝑏𝐸𝐸𝑘𝑘𝑘𝑘 ; Equation 2) or Gaussian (𝑏𝑏𝐺𝐺𝑘𝑘𝑘𝑘; Equation 3) 
• Two distance measures (Euclidean or geodesic) to calculate ℎ in the basis equations; the 

geodesic distances are calculated using Floyd’s algorithm (Floyd 1962) and for more details 
see Scott-Hayward et al. (2014). In this study, geodesic distances are ‘around the salt pan’ 
distances. 

• 12 choices of fixed knot number (for the model-averaging approach) and 12 choices of 
starting knot numbers, 𝐾𝐾𝑠𝑠 for the SALSA2D approach. In each case, the fixed/starting knot set 
was: {5, 10, 15, …, 55, 60}. A total of 285 legal knot positions (𝐾𝐾𝑙𝑙) were considered. These 
consisted of all non-duplicated carcass locations (n=245) and 50 space-filled pseudo-absence 
locations (∼ 20% of all 𝐾𝐾𝑙𝑙). 

• 10 choices of 𝑟𝑟𝑘𝑘 (also specified as part of Equations 2 & 3) 

Additionally, for SALSA2D, 𝐾𝐾min and 𝐾𝐾max were set to 2 and 100 respectively, for all model 
specifications. 

In keeping with Scott-Hayward et al. (2014), the model-averaging CReSS method was governed by 
AIC𝑐𝑐 weights which were used to choose which models to average (𝛥𝛥𝛥𝛥𝛥𝛥𝐶𝐶𝑐𝑐 ≤ 10) and their relative 
contribution to the overall averaged model. In keeping with Walker et al. (2010), the BIC was used to 
govern SALSA2D model selection regarding the choice of knot number and their locations across the 
range of combinations of basis type, distance metric, starting knot number and 𝑟𝑟𝑘𝑘 choices (Schwarz 
1978). In all cases, the log-likelihood score was calculated for each model to enable comparison 
between model selection strategies. 

The SALSA2D algorithm is implemented inside the MRSea R package (Scott-Hayward et al. 2024, R 
Core Team, 2024) for easy use by practitioners (http://lindesaysh.github.io/MRSea/). 

3.3 Finding the largest residual 
 

• Find nearest candidate knot location (of the legal knots remaining and ignoring the already 
selected knots) to each data point (both presence and pseudo-absence locations). Note that 
‘nearest’ is calculated based on whichever distance metric the model uses. Figure 4 shows the 
neighbourhood around each knot. 

• Sum the observed counts within each knot region 



• Make predictions to the pseudo absence grid and sum the estimated intensity within each 
knot region 

• Calculate the absolute residual (|(𝑂𝑂 − 𝐸𝐸)|) 
• Find the 10 knot regions with the largest score. These become the candidates for the 

exchange/move step. 
 

 

Figure 4 Figure showing the knot locations (blue crosses) and the colour shows the nearest knot on 
the pseudo absence grid. 

 
3.4 Numerical comparison 

The log-likelihood scores returned for the model averaging method were fairly close (maximum 
difference 14 points) regardless of the basis function and distance metric used in each model (Table 1, 
Method: `Model averaging’). The geodesic-exponential combination scored the best (largest log-
likelihood) of the 4 combinations trialled. Interestingly, this combination chose 11 models with which 
to average over to obtain this solution, compared with some options that chose far fewer models to 
use as part of the average calculation. In general, geodesic distances were preferred to Euclidean 
regardless of basis. 

The log-likelihood scores for the SALSA2D based selection are shown for the model with the highest 
log-likelihood for each of the basis/distance metric combinations (Table 1, Method: SALSA2D). Across 
the four combinations, the scores were less homogeneous than for the model averaging results and 
the exponential-Euclidean SALSA2D model (using 41 knots) was the best of all trialled here. In 
contrast to the averaging approach, there was a preference for the exponential basis with the distance 
metric secondary. In reality, the user may prefer to select the best model using BIC (as was used for 
𝑘𝑘/𝑟𝑟 selection). In this case, the order of the four parameterisations was the same (exponential-
Euclidean the best and Gaussian-Euclidean the worst) and the best model using BIC was the same as 
in Table 1 when log-likelihood was used (see Section 3 of Appendix S1 for an expanded version of 
Table 1). 

  



Table 1 The results of the model averaging and SALSA2D methods of model selection for a given 
basis type and distance metric used. The `No. Models’ indicates the number of models chosen to carry 
out the model averaging in each case, and the `No. Knots’ indicates the number of knots chosen for 
each model using the SALSA2D selection method. The star indicates the model with the largest log-
likelihood (LL) score, and thus the chosen model in each case. 

Method Basis Distance Measure No. Models No. Knots Log-Likelihood 

MA Exponential* Geodesic 11 - -1432.0 

 Gaussian Geodesic 2 - -1441.5 

 Exponential Euclidean 1 - -1443.4 

 Gaussian Euclidean 8 - -1446.3 

SALSA2D Exponential Geodesic - 32 -1369.7 

 Gaussian Geodesic - 32 -1408.3 

 Exponential* Euclidean - 41 -1301.6 

 Gaussian Euclidean - 47 -1541.6 

 

Using the ‘best’ SALSA2D models only, for all but one combination of basis type and distance metric 
used, all SALSA2D models produced better scores than the model averaging method – sometimes 
reducing the log-likelihood score by as much as 10%. However, if SALSA2D initialises with too few 
knots, the algorithm may get stuck in local minima. So long as a large enough number of starting knot 
locations was selected (∼≥ 40), SALSA2D-based selection resulted in superior scores over the model-
averaging alternative (Figure 5). This demonstrates that the SALSA2D model selection method can 
return improved results and at worst, SALSA2D results were almost indistinguishable from the best 
model averaging-based result. 

 

 

Figure 5 The model identification number (increasing start knots) and the negative log-likelihood 
score for each of the SALSA2D models resulting from a different start knot number, 𝐾𝐾𝑠𝑠. The 
horizontal lines are the scores for the equivalent model averaging result. (Euc - Euclidean, Geo - 
Geodesic, Exp - Exponential and Gau - Gaussian). 



3.5 Visual comparison 

Figures 6 & 7 show the best models from the two different methodological frameworks and the four 
different parameterisations. The best models are selected using BIC for SALSA2D and AIC𝑐𝑐 weights 
for model averaging. Since the two frameworks are compared using the log-likelihood, the figures 
show the best log-likelihood selected models. 

 

Figure 6 Fitted intensity surfaces for the four SALSA2D models selected using log-likelihood. 

 

 

Figure 7 The best model averaged outputs from the four different parametrisations and selected using 
AIC𝑐𝑐 model weights. 



Figure 8 shows the selected knot locations and equivalent 𝑟𝑟 parameter from the 11 averaged models 
(Figure 8 a) and the one best SALSA2D model (Figure 8 b). The averaged knot locations are more 
difficult to represent but it can be seen that there are multiple 𝑟𝑟 values (ranging from global to very 
local) across the same locations and occasionally a location where the sign of the coefficient changes 
between models. The SALSA2D result is more nuanced with very few knot locations selected to the 
west of the park. For the 41 selected locations, a variety of 𝑟𝑟’s were chosen. It is interesting that the 
SALSA2D approach found the Euclidean distance metric to be best and it is possible that the more 
local knots chosen under this method negate the need for the geodesic distances by limiting the 
possible leakage across the pan. 

 

 

Figure 8 The knot locations and 𝑟𝑟 (effective range of basis function) from the best model averaging 
(top) and SALSA2D (bottom) models. Yellow is for a positive model coefficient and purple a negative 
one. The size of the coloured circles is a visual representation of the size of the 𝑟𝑟 parameter. Note that 
in (a) the concentric rings are from models had the same knot locations with different 𝑟𝑟. In (b) the 
colours overlap but each 𝑘𝑘 is in a different location. The carcass locations are shown as grey/black 
circles. The blue polygon is the Etosha salt pan. 
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