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ABSTRACT Mortality is an important component of understanding elephant population dynamics and 
disease ecology. We use carcass location data from Etosha National Park, Namibia, collected under the CITES 
Monitoring the Illegal Killing of Elephants programme, to assess the spatial distribution of elephant deaths, 
as identified through automated surface feature selection, and explore implications for park management. We 
modelled carcass location data using a regression spline framework, with targeted flexibility, a spatial term 
and additional environmental covariates (annual rainfall, distance to water and roads). The novel modelling 
approach chosen acknowledges the localised and patchy distribution of carcasses and recognises physical 
barriers (Etosha pan) to substantially reduce the risk of false conclusions about the location of elephant deaths 
in the park. Our results showed high carcass intensity close to waterholes (< 2.5 km) and roads (< 5 km) and 
in areas of the park with average rainfall (~450 mm annually). Some high-risk areas were identified, 
particularly in the north-east of the park, and the mortality risk did not always coincide with elephant 
distribution. These findings are useful for understanding population dynamics and drivers for the park’s 
elephant population and park management, particularly for disease surveillance. 
 
KEYWORDS African elephant; CITES MIKE program; disease; mortality distribution; Namibia; presence-
only data; spatially adaptive 
 
 

INTRODUCTION 
 
The African elephant (Loxodonta africana) occurs 
across 37 African countries. Southern Africa holds 
the largest number of elephants on the continent 
(Thouless et al. 2016). It is the largest living 

terrestrial mammal species and is of great 
conservation concern (Guldemond et al. 2017, 
Skinner & Chimimba 2005). On a continental scale, 
elephant populations are declining rapidly. As a 
result, the International Union for the Conservation 
of Nature (IUCN) recently reclassified the species’ 
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conservation status as Endangered (Gobush et al. 
2022). Reasons for this decline include habitat 
fragmentation and loss, unsustainable hunting, 
conflict with humans, and increasingly scarce 
resources due to a changing climate (Ripple et al. 
2015, Chase et al. 2016). 
 
Mortality is a key factor in understanding elephant 
population dynamics and monitoring disease. The 
recent Kavango-Zambezi (KAZA) elephant survey 
noted a large proportion of elephant carcasses 
compared to previous surveys (Bussière & 
Potgieter 2023). Poaching has often been the major 
focus of elephant mortality studies (Douglas-
Hamilton 1987, Wittemyer et al. 2014, Beale et al. 
2018, Kuiper et al. 2020), with other causes such as 
human-elephant conflicts, accidents and natural 
processes (e.g. disease) less studied. With few non-
human predators, natural elephant mortality is 
often a consequence of food scarcity and water 
stress during droughts (Mukeka et al. 2022) or of 
diseases such as anthrax (Huang et al. 2023). 
However, accurately determining the true 
distribution of natural mortality may be 
challenging due to varying patrol effort and 
distribution of elephants being driven by resource 
availability and preferences (Kuiper et al. 2020). 
 
In contrast to the rest of Africa, there has been little 
to no poaching of elephants reported in Etosha 
National Park (ENP), and the population in the 
country is apparently increasing (Craig et al. 2021). 
Elephant mortalities are mostly attributed to 
resource deficiencies, drought, and disease (Huang 
et al. 2023). Anthrax (Bacillus anthracis) is endemic 
to the park and a major cause of herbivore 
mortality, in particular elephant mortality 
(Lindeque & Turnbull 1994; Turner et al. 2013). The 
Convention on International Trade in Endangered 
Species (CITES) Monitoring of Illegal Killing of 
Elephants (MIKE) programme has been active in 
ENP for over a decade, and substantial resources 
are used to collect relevant abundance and 
mortality data through dedicated aerial surveys 
under strict survey protocols. Additionally, as part 
of routine park activities, opportunistic data and 
carcass detections from biennial helicopter block 
count surveys are also recorded. Together these 
form the elephant mortality database for ENP. To 
date, these data have only been reported to the 
MIKE project and not analysed on a spatial scale. 
Analysis of carcass distribution and density could 

be advantageous for management of elephants, 
their resources and disease in ENP. 
 
Statistical modelling of these data is useful since 
the park is very large (~23 000 km2) and regardless 
of the survey regime, the observed counts will 
undoubtedly comprise a subset of total mortalities. 
Reliable modelling results which accurately 
estimate the magnitude and location of elephant 
mortality in ENP are also not guaranteed and 
require careful consideration of two important 
factors, namely the largely unused salt pan and the 
heterogeneous distribution of elephants due to 
habitat selection and the presence of surface water. 
Failing to account for the possibly unusual spatial 
patterns in these data and/or assuming points 
across the pan are as closely linked as equidistant 
points without a physical barrier, can unwittingly 
lead to false conclusions about the magnitude and 
location of elephant deaths in the park. 
 
This study uses the Complex Region Spatial 
Smoother (CReSS) to analyse elephant mortality 
patterns in ENP while considering linear and non-
linear covariates. CReSS is a regression spline 
based statistical modelling method equipped to 
address both aspects of these data (Scott-Hayward 
et al. 2014). Spline based regression is a well-
established method for estimating relationships 
when the relationship between the response 
(mortality) and a set of covariates is unknown and 
likely non-linear. Splines can return reasonable 
results with few parameters but can also 
approximate a wide range of smooth functions. In 
a regression spline approach the curve flexibility is 
determined by judicious placement and number of 
‘knots’. In the CReSS method, straight-line 
(Euclidean) or ‘around the salt pan’ (Geodesic) 
distances can be used to underpin the fitted surface 
and the method is ‘spatially adaptive’, which 
means the flexibility can be targeted to 
accommodate any particularly patchy trends 
and/or local surface features (Scott-Hayward et al. 
2014, 2015). 
 
While useful, the CReSS method undertakes the 
crucially important model selection process using 
a model-averaging approach which can be 
computationally intensive. Use cases have also 
shown that this can mask unusual spatial patterns. 
Walker et al. (2010) presented an algorithm for 
adaptively placing knots called SALSA (Spatially 
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Adaptive Local Smoothing Algorithm). This 
‘adaptive knot selection’ approach, results in a 
number and location of the knots which combines 
a local-search strategy with a restricted 
forward/backward regression approach for 
efficient selection. In this paper, we propose using 
CReSS with a novel automated model selection 
approach, SALSA2D, (based on Walker et al. 
(2010)), to identify atypical spatial distributions 
and reveal patterns, which have implications for 
park management in this case. 
 
The aim of this study is to investigate the spatial 
distribution of carcass locations in ENP and 
whether the distribution and density of elephant 
carcasses is related to annual rainfall, their distance 
from waterpoints and distance from roads. We use 
the CReSS radial basis function (Scott-Hayward et 
al. 2015), introduce the novel SALSA2D algorithm, 
for model selection, and apply these methods to 
presence-only data – the spatial locations of 
carcasses (presences) – to develop a spatial model 
to predict the risk of elephant mortality across the 
park. In a large national park, early detection of 
carcasses allows for enhanced monitoring and 
management interventions. We hypothesise that 
elephant deaths are influenced by environmental 
factors and not merely by the distribution and 
density of live elephants in ENP. 
 

METHODS 
 
Study Area 
ENP covers over 22 000 km2 of Namibia’s northern 
arid savanna. Rainfall varies from approximately 
500 mm per annum in the east, decreasing 
westwards to about 250 mm. The Etosha Salt Pan 
covers 4 812 km2 and is largely void of vegetation 
and mostly dry, except for small periods of the 
rainy season from January to April. The park 
sustains important populations of most of Africa’s 
large mammals, including a high density of 
southern black rhino (Diceros bicornis bicornis) and 
an elephant population of approximately 2 900 
(Craig et al. 2021). The population is growing 
slowly at approximately 1.75% per year, compared 
to 4.75% in the Zambezi region and 4.85% in the 
Khaudum-Nyae-Nyae complex (Craig et al. 2021). 
Most surface water is pumped from underground 
into artificial waterholes where large herds of 
wildlife congregate to drink. A small number of 
natural springs occur mostly in the east. An 

extensive road network covers the central and east 
of the park with limited management roads and 
firebreaks across the remaining area. 
 
Data Description 
The MIKE data (MIKE 2018) consists of 320 carcass 
locations observed between February 2000 and 
March 2017 in ENP. The survey protocol for MIKE 
was published by Craig (2012) and these dedicated 
aerial surveys are supplemented by approximately 
biennial helicopter block count surveys, during 
which carcasses may be recorded. As most of the 
carcass data are from dedicated surveys, this 
minimises the possibility of patrol bias driving the 
distribution of carcasses. The observed fatalities 
were recorded as being due to anthrax, natural 
(age-related) causes, poaching and unknown. 
While a substantial proportion of the carcasses 
were recorded as being for ‘unknown’ reasons 
(54%) the largest known cause of death is from 
anthrax (27.8%; 12.5% confirmed cases and 15% 
suspected). Less than 1% of the carcasses were 
confirmed as poached. All reported carcasses were 
used in the analysis regardless of type. 
Disregarding 2017 as it was only a partial year, 
2006 and 2014 had the fewest recorded carcasses 
(7–8), whilst 2002, 2003, 2005 and 2011 had the 
highest recorded (27–28) (Figure 1). As there were 
a relatively small number of observations per year, 
no guarantee the deaths occurred in the year of 
detection and no obvious changes in the spatial 
pattern of observations, the data were pooled 
across all years. There was also no evidence that 

 

 

Figure 1 Number of elephant carcasses detected in 
Etosha National Park, by approximate year of death. The 
years are estimated based on the condition of the 
carcasses when found. 
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there were any differences in spatial patterns when 
dividing the time series into three equal time 
periods (2000–2005, 2006–2011, 2012–2017) (space-
time Monte Carlo test; p > 0.95; Diggle et al. 1995). 
 
Coordinates were converted from WGS84 (World 
Geodetic System) to Universal Transverse 
Mercator (UTM) zone 33S and the study region was 
extended beyond the ENP boundary by 20 km to 
include carcasses just outside the park. 
Additionally, the large salt pan was reduced in size 
by 2 km to include carcasses found near the edge of 
the pan. The data show that carcasses seem to occur 
near roads (or, at least, are more commonly 
observed there) and waterholes (Figure 2). While it 
is possible that these patterns are due to 
opportunistic reporting of carcasses as a result of 
park vehicles moving along the roads, the data 
were from both opportunistic and dedicated 
surveys, which are carried out without reference to 
roads Furthermore, the movement patterns of 
collared elephant in ENP do utilise roads/tracks 
and fire breaks extensively and are known to 
frequent waterholes (Chamaillé-Jammes et al. 2007, 
Tsalyuk et al. 2019). Anthrax-related deaths appear 
to be particularly well correlated with waterholes 
(Figure 2). 
 
Data Analysis 
Density of elephant carcasses, based on the 
presence and (pseudo-) absence of carcass 
locations, was modelled using four candidate 
covariate terms: distance from the nearest road, 
distance from the nearest water point, mean annual 

rainfall and a spatial term based on spatial 
coordinates. Distance from nearest road and 
nearest waterhole metrics were considered as 
candidates in the model to reflect differential 
mortality rates near roads and waterholes, where 
that exists. Mean annual rainfall was based on 
rainfall data collected from 168 rain gauges 
distributed across ENP which are visited annually, 
when possible. When annual data were 
unavailable, this metric was averaged across years 
for each gauge before detailed interpolation 
(df = 150) to indicate areas with persistently high or 
low rainfall. Details on the rainfall interpolation 
can be found in Section 1 of Appendix 1. 
 
Proximity to waterholes was included since 
elephants frequent waterholes, particularly in the 
dry season (Tsalyuk et al. 2019) and inhabit areas 
close to water (Harris et al. 2008). In addition to 
distribution-based mortality it is thought that 
anthrax-related deaths may be related to the 
presence of waterholes (Zidon et al. 2017). The 
reasons for trialing proximity to roads in the model 
were due to elephant use of roads for travel 
(Tsalyuk et al. 2019), and therefore possible 
increased detection near roads (e.g. easier to 
observe). 
 
The spatial term was considered to represent 
spatial patterns in mortality which are not 
adequately explained by proximity to the other 
covariates. This term is crucial here - correctly 
identifying systematic spatial patterns in mortality 
might provide insights about park features not 

 

 

 

Figure 2 The study area with carcass locations. Green triangles show confirmed or suspected anthrax cases and grey circles 
all other types of death (natural causes, poaching and unknown). To visualise overlapping points, the colours are semi-
transparent, therefore a darker shape indicates overlapping carcass locations. 
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currently thought related to mortality and 
overlooking these prevents the mitigation of future 
elephant mortalities, particularly those related to 
poaching. 
 
In this dataset, while the carcass locations were 
available, the survey tracks were not, and so 
carcass-free locations were estimated for 
subsequent modelling. The number of carcass 
locations per unit area (‘intensity’) was modelled 
against selected covariates in the study region. 
‘Intensity’ is a relative measure and gives the 
expected abundance of carcass sightings for a given 
area. Here, we also use the link between logistic 
regression and an inhomogeneous Poisson point 
process model (PPM; Warton & Shepherd (2010)) 
and the downweighted Poisson regression method 
(Renner & Warton 2013) to fit a Poisson PPM using 
a pure regression generalised additive model 
(GAM) framework. This results in a basic PPM 
with flexible smooth terms (sometimes referred to 
as resource selection functions). Pseudo-absences 
play the role of quadrature points in point process 
modelling and were selected as a regular grid and 
the number was based on convergence of the 
likelihood (Renner & Warton 2013). 
 
Method description 
The CReSS approach fits pure spatial regression 
models to a set of coordinates 𝐳𝐳𝑖𝑖 of the form: 
 

𝑔𝑔(𝐲𝐲𝑖𝑖) = 𝜂𝜂𝑖𝑖 = 𝛽𝛽0 + 𝑠𝑠(𝐳𝐳𝑖𝑖) = 𝐗𝐗𝑖𝑖𝛃𝛃  (1) 
 
where 𝑔𝑔 is the link function and 𝜂𝜂 the linear 
predictor. 𝐬𝐬 is a two-dimensional surface 
approximated by a linear combination of 𝐾𝐾 
exponential basis functions, 𝑏𝑏𝑏𝑏(ℎ, 𝑟𝑟)𝑘𝑘. Each of the k 
basis functions can be considered as a covariate in 
the linear predictor and so in matrix form, 𝐗𝐗 is the 
design matrix with 𝐾𝐾 + 1 columns (K bases and the 
intercept) and 𝛃𝛃 the vector of coefficients. 
 
In each basis function, the range parameter, 𝑟𝑟, 
dictates the extent of the decay of the exponential 
function with distance between points, and thus 
the extent of its local nature. ℎ indicates a geodesic 
or Euclidean distance (for some observation 𝑖𝑖 and 
the 𝑘𝑘-th knot location). Optional distance metrics 
are a very useful feature of the CReSS approach as 
the large salt pan effectively acts as a hole in the 
domain. This means that distances between points 

must be incorporated as the elephant travels 
(geodesic), not as the crow flies. 
 
Parameter 𝑟𝑟 takes values such that if 𝑟𝑟 is small the 
model will have a set of relatively local basis 
functions and if 𝑟𝑟 is large the model will have a set 
of relatively global basis functions. The exact 
values of 𝑟𝑟 are dependent upon the range and units 
of the spatial covariates. 
 
Every data point can be chosen as a knot location, 
so deciding which basis functions to include in the 
surface is a standard covariate selection problem. 
The CReSS with model averaging procedure (Scott-
Hayward et al. 2015) fits multiple models with each 
model evaluated at one of a variety of parameter 
values for the number of space-filled knots, 𝐾𝐾, and 
the effective range parameter 𝑟𝑟𝑘𝑘. This paper 
presents CReSS with SALSA2D, which uses the 
same model framework as for model averaging 
(Equation 1) but where the best knot locations are 
chosen using automatically using an iterative 
procedure. The SALSA algorithm is not a complex 
modelling algorithm, rather it is a covariate 
selection method with three intuitive steps and is 
presented here as it provides an effective tool for 
non-technical modellers to automatically select 
which knots to include in the spatial surface. 
 
The algorithm works in (at least) two dimensions 
and begins with space-filled knots to facilitate 
spatial coverage and then adaptively moves, adds 
and drops knots into, or from, locations in line with 
poor model fit (evidenced by large residuals) and 
an objective fit criterion. At each stage, the 
global/local extent of each basis function, via the r 
value employed, can also be revised as part of the 
search for a more appropriate surface. So, unlike 
the model averaging approach, SALSA2D returns 
one model with specifically selected 𝐾𝐾 and 𝑟𝑟𝑘𝑘 
enabling standard regression methods for 
assessment of fit and uncertainty estimation. 
Further details on the algorithm and a full 
comparison of the model averaging vs SALSA2D 
approach can be found in Section 3 of the 
supplementary material, Appendix 1. 
 
The SALSA2D algorithm is implemented inside the 
MRSea R package (Scott-Hayward et al. 2024, R 
Core Team 2024) for easy use by practitioners 
(http://lindesaysh.github.io/MRSea/). 
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Model specification 
We modelled the intensity of elephant carcass 
locations as a function of distance to water, roads, 
mean annual rainfall and as a spatially adaptive 
smooth function of spatial coordinates. The 
locations of the carcasses were modelled jointly 
with the pseudo-absences by maximising the 
following weighted Poisson log-pseudolikelihood 
(Berman & Turner 1992): 
 

𝑙𝑙(𝜷𝜷; X) = �𝑤𝑤𝑖𝑖

𝑁𝑁

𝑖𝑖=1

�𝑦𝑦𝑖𝑖log�𝜆𝜆(X𝑖𝑖)� − 𝜆𝜆(X𝑖𝑖)�  (2) 

 
where 𝜆𝜆(X𝑖𝑖)) is the intensity at location 𝑖𝑖, 𝐗𝐗𝑖𝑖 
represents the design matrix at location 𝑖𝑖, 𝑁𝑁 is the 
total number of points (presence and pseudo-
absence), w = {𝑤𝑤1,⋯ ,𝑤𝑤𝑁𝑁} are quadrature weights. 
𝑦𝑦𝑖𝑖 = 1

𝑤𝑤𝑖𝑖
 if 𝑖𝑖 is a presence location and 𝑦𝑦𝑖𝑖 = 0 for a 

pseudo-absence. 
 
The log-pseudolikelihood in Equation 2 is a re-
expression of the Poisson PPM log-likelihood 
(Cressie 1993), which means that models can be 
fitted using standard software. Here we model the 
expected number of carcasses per km2 and so the 
weights for the pseudo-absence points are 
specified as the area of the study region, 37 872 km2 
(ENP plus the 20 km buffer) divided by the number 
of pseudo-absences. The weights for presence 
points are set to some small value (10−6). 
 
Likelihood convergence was used to determine the 
number of pseudo-absences which was estimated 
to be 9 644 (a grid spacing of 2 km). For more 
details see Section 2 of Appendix 1. 
 
The GAM model specification was: 

 
log�𝜆𝜆(X𝑖𝑖)� = 𝜂𝜂𝑖𝑖

= 𝛽𝛽0 + 𝑠𝑠1(distWater𝑖𝑖) + 𝑠𝑠2(rainfall𝑖𝑖) + 𝑠𝑠3(distRoads𝑖𝑖) + 𝑠𝑠4(𝐳𝐳𝑖𝑖)
= 𝐗𝐗𝑖𝑖𝛃𝛃

 

 
In this case, 𝜆𝜆(X𝑖𝑖) is the intensity at location 𝑖𝑖 and 
X𝑖𝑖 represents the coordinates and environmental 
covariates (design matrix). 𝑠𝑠1 - 𝑠𝑠3 represent one-
dimensional basis functions, while 𝑠𝑠4(𝐳𝐳) represents 
a two-dimensional exponential basis function for 
the spatial coordinates. 𝛃𝛃 is a vector of model 
parameters associated with all columns of the 
design matrix, 𝐗𝐗. The columns of 𝐗𝐗 comprise the 

intercept, spline bases for water, rainfall and roads 
and the exponential radial bases for the spatial term. 
 
Specifically, quadratic 𝐵𝐵-splines with SALSA based 
knot selection (Walker et al. 2010) were used to 
implement the one-dimensional smooth terms for 
water, rainfall and roads. The two-dimensional 
smooth was an exponential basis with Euclidean 
distances. Knot number, their locations and 𝑟𝑟𝑘𝑘 
values were chosen using the SALSA2D algorithm. 
We used the outputs from a small methods 
comparison exercise to determine the starting 
parameters for SALSA2D. The details of this study 
can be found in Section 3 of Appendix 1. The 
Bayesian Information Criterion (BIC; Schwarz 
1978) was used to govern model selection in all 
cases. BIC is an information criterion approach to 
model selection that trades off model fit (the 
loglikelihood of the model; LL) with the number of 
estimated parameters (k): 
 

BIC = -2LL + klog(n) 
 
Where n is the number of data points and in this 
study is equal to the number of carcass locations, 
320. Models with a smaller BIC score are selected 
for. 
 
Lastly, to determine areas of poor fit, the exchange 
step requires the calculation of residuals. This was 
achieved by creating a neighbourhood around each 
knot location, 𝑘𝑘, and comparing the observed 
number of points with the sum of the estimated 
intensities in the same area. For more details, see 
Section 3.3 of Appendix 1. 
 

RESULTS 
 
Carcass intensity, the expected abundance of 
carcass sightings for a given area, is clearly highest 
near waterholes, roads and locations where annual 
rainfall is approximately 450 mm (Figure 3). Of 
these three covariates, the distance to waterhole 
term has the strongest influence on carcass 
intensity. Specifically, intensity decreases steeply 
with the distance from water until approximately 
5 km when the relationship subsides. Distance to 
roads has a smaller effect on carcass intensity and 
with a less steep decline in intensity to that of 
distance to water. The relationship flattens off 
toward zero intensity at approximately 10 km. 
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The addition of distance from waterholes, distance 
from roads and mean annual rainfall to the spatial 
term, improved model results when compared 
with model results based on a SALSA2D-based 
spatial term alone (Models 2 vs 3 in Table 1; the BIC 
scores substantially improved from 11 038 to 
2 021). 
 
The spatial term also contributed positively to the 
model, despite the extra parameters required 
(Table 1); the BIC score decreased from 2 144 for 
the univariate model (Model 1) to 2 021 when the 

spatial term was included (Model 2). The practical 
consequences of its inclusion were clearly 
evidenced by tempering the ‘global’ effect of roads 
and water which was implicit in the model that 
included the additional variables (Figure 4a). In 
some cases, the road and water effects diminished 
altogether where carcasses were not seen in the 
data. Crucially, this spatial term also better 
accommodates carcass locations which are not 
explained by only their proximity to water, 
distance to roads or average annual rainfall. 
Figure 5 shows that in Model 1, the waterhole 
relationship dominates with a peak of intensity at 
each one. When the spatial term is added, the 
waterhole peak is suppressed at a number of 
waterholes and even increased at others. The peak 
in intensity is shifted to the north which is in 
keeping with the high number of carcasses 
observed there. Overall, our modelling shows that 
most, but not all, waterholes and some roads have 
high carcass intensity. Figure 4b shows the top 5% 
highest carcass intensity areas which form the 
highest risk areas in the park. These are mainly in 
the northeast of the park and in the area around 
Okaukuejo (central south of the pan). 
 

DISCUSSION 
 
We have demonstrated a strong relationship 
between mortality of elephants and distance to 
waterholes. Elephants are highly dependent on 
surface water for drinking, thermoregulation and 
parasite control (Bothma & du Toit 2010). It is 
therefore not surprising that carcasses are mostly 
found near waterholes as a direct factor of 
distribution density. This relationship extends to 
 
 

a)  

 

 

b) 

 

 

c) 

 

 

Figure 3 The estimated relationships, from the best 
model, of each variable to carcass intensity: (a) 
waterholes, (b) roads and (c) annual rainfall. The red 
shaded area/line is a 95% confidence interval about the 
estimated relationship. Tick marks at the bottom of each 
plot show the distribution of the observed carcass 
locations across each covariate.  

Table 1 Model selection results for the one dimensional 
smoother-based relationships only (Model 1) and the 
model with both one and two-dimensional smoothers 
(Model 2). Model 3 is the model with only a two 
dimensional smooth. df is degrees of freedom of each 
model term and LL is the Log-Likelihood score. The BIC 
score in bold is the best selected model.  

Model Term 𝑑𝑑𝑑𝑑 𝜒𝜒2 𝑝𝑝-value LL BIC 
1 s(rainfall) 3 < 0.0001 

 
-1048.7 

 

2143.5 
 s(distRoads) 3 < 0.0001 

 
  

 s(distWater) 3 < 0.0001   
2 s(rainfall) 3 < 0.0001 

 
-886.3 

 

2020.6 
 s(distRoads) 3 < 0.0001 

 
  

 s(distWater) 3 < 0.0001   
 s(xcoord, ycoord) 35 < 0.0001   
3 s(xcoord, ycoord) 52 < 0.0001 -5496.4 11038 
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Figure 4 (a) Estimated carcass intensity (the expected number of carcass sightings in a 4 km2 area), throughout the study 
region using the best model, Model 2. (b) The top 5% intensity areas are highlighted to show the areas with the highest risk 
of mortality in the park. The blue is the Etosha salt pan, the blue crosses are waterholes, and the black lines are roads. 

 

 

Figure 5 The estimated carcass intensity (the expected number of carcass sightings in a 4 km2 area), for the north-east part of 
the study region for (a) Model 1 (1D variables only) and (b) Model 2 (1D variables and spatial term). 
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roads, albeit not as strongly as for waterholes. 
Many waterholes are provided along tourist roads 
to increase wildlife viewing potential; hence the 
distribution of waterholes and roads are similar, 
resulting in a similar probability of carcasses from 
each variable. Outside of protected areas, elephants 
often avoid roads to reduce the risk of persecution 
(Cushman et al. 2010), however, ENP’s elephants 
face few anthropogenic threats and are habituated 
to tourist vehicles. The elephants likely use the 
roads to traverse the landscape when the pan and 
clay areas adjacent are muddy or waterlogged or 
bush is particularly dense. 
 
Generally, and especially in large parks, wildlife 
data collection effort is often heavily biased by the 
spatial extent of roads (Bothma & Du Toit 2010) 
and can lead to patrol bias, giving a false sense of 
the true distribution and density of carcasses. The 
majority of the carcass data analysed here were 
from dedicated surveys, designed to reduce the 
potential effects of bias from using roads/tracks. 
Patrol bias is therefore considered to be minimised 
in this case. 
 
Simply including proximity to waterholes and 
roads in the model assumes that any relationships 
pertain to all waterholes/roads regardless of their 
location. However, not all roads/waterholes have 
been associated with carcasses. The addition of the 
spatial term, with novel spatially adaptive knot 
selection using SALSA2D was able to 
suppress/enhance the global relationships with the 
environmental covariates in particular areas. This 
resulted in the identification of some critical areas 
of the park, which is important for effective park 
management – for example, in terms of disease 
outbreak, which after ‘unknown’ was the largest 
category in the data. It is impossible to patrol the 
large park area at random and there are areas of the 
park identified here (particularly those accessed by 
a subset of roads/waterholes) that are shown to 
necessitate more monitoring efforts than others.  
 
Elephants are highly mobile and so early detection 
of carcasses, in particular anthrax-related deaths, is 
important to identify and monitor disease 
outbreaks across the park (Lindeque & Turnbull 
1994). The area of high intensity of carcasses to the 
south of the main pan matches well with the area 
of high anthrax risk identified by Dougherty et al. 
(2022). This is also the area where the majority of 

anthrax or suspected anthrax cases were found in 
our database. Specifically, we show here that 
within this anthrax risk area the highest intensity 
of carcasses is near the waterholes. This is in line 
with the findings of Ebedes (1976) and Lindeque & 
Turnbull (1994) where animal activity in the 
overgrazed bare soil areas around Etosha’s 
artificial waterholes stir up dust-borne anthrax 
spores which are inhaled by wildlife. In addition, 
the finding of carcasses closely associated with 
waterholes is not surprising given several studies 
report a preference for animals to be close to water 
(e.g. Harris et al. 2008, Wilson et al. 2021). 
 
In the critical high carcass intensity area identified 
in the north-east of the park, the cause of death is 
less clear as the majority of carcasses were of 
unknown cause. This could be because many of 
these carcasses were detected during aerial surveys 
and samples collected were of inadequate quality 
to establish disease as the cause of death. However, 
it is interesting to note that the water sources in 
ENP are a mix of boreholes and springs, with most 
springs occurring in the north-east. It is possible 
that in this region, there is higher water stress 
during drought which may play a role in mortality. 
 
Whilst the density of elephants across the park is 
shown to be fairly constant (Craig et al. 2021), we 
have found that the density of carcasses is not. 
Mortality is one of the key components in 
population dynamics models and the effects of 
spatial and temporal heterogeneity must be 
accounted for to have accurate predictive models 
for use in conservation and park management 
(Sibly et al. 2009). This provides valuable input into 
better understanding dynamics in ENP’s elephant 
population. For example, it is well known that 
surface water availability drives the distribution 
and abundance of elephants, and that artificial 
manipulation of water availability is one of the 
tools available for the management of elephant 
populations (Chamaillé-Jammes et al. 2007). ENP, 
however, has adopted a mostly passive 
management strategy, which may preclude water 
source manipulation as a management tool. In light 
of the probable impacts of climate change on 
surface water availability, understanding the 
linkage will be important for park management. It 
would also be of value to look at the carcass 
distribution of other large mammals to 
determine whether population-driven mortalities, 

https://creativecommons.org/licenses/by-nc-nd/4.0/


Namibian Journal of Environment 10 (A): 1–12 Scott-Hayward et al. 

ISSN: 2026-8327 (online) 10 Licensed under CC BY-NC-ND 4.0 

anthropogenic factors, environmental factors, or a 
combination of these play a role. In this arid 
savanna system, rainfall is low and erratic, and a 
key driver of wildlife movements (Hering et al. 
2022). The impact of this on anthrax epidemiology 
is also not well understood and rainfall as a factor 
could assist predictive elephant population 
dynamics aiding management of the species in ENP. 
 
If the deaths are natural and, for instance, disease-
related (e.g. anthrax) then this provides valuable 
information about the prevalence and locale of 
disease in the park. Endemic anthrax occurs in 
ENP annually (Turner et al. 2013) and plays an 
important role in elephant population regulation 
or limitation. The monitoring of the prevalence of 
anthrax in elephants is important, because it 
advances our knowledge of a top-down factor 
limiting a mega-herbivore. 
 
Even though the poaching of elephants in ENP is 
low (20 deaths reported to MIKE in 2018 and none 
poached), the general trend of animal poaching in 
Namibia in more recent years is increasing (GRN 
2023). As the number of human-related elephant 
deaths increases it is very useful knowledge to 
have a baseline distribution of natural deaths. It is 
also very important in light of the mass death 
events seen in Botswana in 2020 and 2021 
(Karombo 2021). Understanding the prevalence of 
natural mortality may provide insights should 
such events ever occur in ENP. 
 
Critchlow et al. (2017) developed a method for 
improving the efficiency of ranger patrols using 
ranger-collected monitoring data. Ranger patrols 
are not just important for law enforcement but also 
the conservation of key species as well as ecological 
monitoring. With limited resources available for 
patrols, the key is to ensure that the patrol effort is 
efficient with respect to the activity one wishes to 
combat. The starting point for the method 
presented by Critchlow et al. (2017) is a least one 
geographical map of illegal activity occurrence. 
However, the activity does not need to be an illegal 
one and in this case the activity of interest could be 
risk of disease outbreak. Along with a map of 
existing ranger effort, the carcass intensity maps 
presented here could be used to assess and target 
the existing ranger effort in the park without the 
need for increased resources. Natural mortalities 
may be indicative of underlying ecological or 

anthropogenic problems, which adaptive park 
management could address. 
 
In future studies, if a more precise date of death is 
available, it is possible that the use of more 
dynamic predictor variables, such as NDVI or fire 
risk, could improve the model-based outputs. In 
addition, recording and acknowledging the effort 
associated with collecting the data (i.e. reporting 
tracks flown) would enable known zeros (absence 
of carcass) to be included in the modelling 
framework and likely further improve estimation. 
Should poaching increase in ENP, then the novel 
methods presented here can provide necessary 
information about the prevalence, locale and 
patterns of these deaths. Moreover, should 
poaching occur in areas of low natural mortality 
risk, then increased or targeted mitigation 
measures can be efficiently actioned. From a 
practical perspective, understanding both the 
magnitude and spatial patterns of elephant deaths 
in ENP may assist in adapting patrol efforts in and 
around the park to track the anthrax disease and/or 
combat any poaching activities. 
 

SUPPLEMENTARY MATERIAL 
 
See Appendix 1 Section 1 for information on the rainfall 
model, Section 2 for pseudo-absence selection and 
Section 3 for more detailed SALSA2D information and 
the model averaging vs SALSA2D comparison. 
 
The code and data for the analyses in this paper can be 
found at the github site of the corresponding author: 
https://github.com/lindesaysh/Elephant_carcass_paper. 
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